

Meta Model for Long Lived Transactions
FYP 2006 – Inception Report

University of Malta
Department of Computer Science and A.I

Developed By:

Justin Spiteri 143083(M)

B.Sc. I.T Hons Year 4

Supervisor: Mr. Patrick Abela Author: Justin J. Spiteri

Title: Long Lived Transactions Page 2 of 18

Abstract

The main aim of this report is to provide a brief insight into the world of
transaction processing with emphasis on the areas which consist of long lived
transaction processing in particular.

An overview of the basic concepts of transaction processing and

transaction modeling is initially given, thus providing theoretical background to
the subject, together with a clear picture of the different types of software
specifications and implementations which deal with transaction processing,
currently available.

The main problem found during the research process was mainly the fact

that to present date, even though there is a vast selection of official solution
specifications, there are no completely inter-operable software implementations
which cater for long running transactions. This document thus serves as a
prologue to an advanced software solution which caters for long running

transactions. This takes place after having thoroughly analyzed the research
process results, together with the general situation of the transaction processing
arena, as it stands to the present date.

Supervisor: Mr. Patrick Abela Author: Justin J. Spiteri

Title: Long Lived Transactions Page 3 of 18

Table Of Contents

Chapter 1: Project Description... 4

1.1 Introduction & Motivation ... 4
1.2 Background ... 6

1.3 Aims and Objectives... 10
1.4 Methods.. 10
1.5 Deliverables... 12

Chapter 2: Work Plan... 13

Appendix A: General Information .. 14

Appendix B: Bibliography... 16

Supervisor: Mr. Patrick Abela Author: Justin J. Spiteri

Title: Long Lived Transactions Page 4 of 18

Chapter 1: Project Description

1.1 Introduction & Motivation

The following text introduces us to the notion of transactions and

transaction modeling, which are the main area of work for this project. Let’s
begin by providing a definition for transaction modeling. Transaction modeling is
the process in which, a real world transaction, such as the core part of a money
bank transfer is modeled into a business process, composed from Units of Work.
Each business process represents a formalized way in which this transaction can

be carried out. Most transaction processing systems present today are based on
the traditional two phase commit Transaction Model, which caters for Atomic
Transactions. These systems are often completely ACID oriented, however, as
Mark Little, from HP-Arjuna Technologies says in one of his online articles;

“The structuring mechanisms available within traditional atomic transaction
systems are sequential and concurrent composition of transactions. These
mechanisms are sufficient if an application function can be represented as an
atomic, short lived transaction.” (Add reference)

In simple terms, this statement refers to the fact that the transaction
handling facilities present as at date, are able to cater very efficiently only for
transactions of an atomic, business to client (B2C) nature, for example a typical
flight booking system, where the client makes a ticket request to the airline
company, and the company either commits or denies. However when it comes
to long running transactions, which may involve much more complex B2B
transactions, these currently available mechanisms based on ACID properties are
just not adequate, due to the facts mentioned in the previous definition of long
running transactions. A good practical example of the inefficiency of ACID based
long running transactions would be if one takes into consideration a typical
holiday planning or travel agent system, where one may book a flight, train, taxi
service, or even hotel. If a client initiates a compound transaction, where he

wants to book both a hotel room and an air ticket, the intricate dependencies
involved possess a much higher level of complexity than that of two separate
transactions, where a client first books an air ticket, and then a hotel room, in

two separate processes. This example shows that the differences between long

Supervisor: Mr. Patrick Abela Author: Justin J. Spiteri

Title: Long Lived Transactions Page 5 of 18

running transactions and atomic transactions disallow the sharing of a common
platform between the two. A completely ACID based long running transaction
system is inadequate. Long lived transactions must have a specialized
mechanism which caters specifically for them. Even though specifications for
such mechanisms are available, good implementations are nowhere to be found.
This led research teams to put more effort in the research of long lived
transaction modeling in an attempt to enhance long lived transaction processing,
thus alleviating the present day symptoms present in current transaction
processing systems, which are mostly ACID based.

The main problem lies at the heart of the subject; the transaction models.

A vast amount of transaction models have been proposed since 1980, varying
from simple Atomic Transaction Handling Models to very complex Compensation
Based models. The problem is that it’s impossible to have one transaction model

which caters for all possible transactional scenarios. Each proposed model fits an
application, or a range of applications, and thus is most effective when a
developer uses it for the relevant range of applications. In certain cases, an
application may need a completely custom model, made from Advanced
Transaction Model Primitives, but not conforming completely to any of them, nor
to any of the true advanced transaction models currently available. This would
require the developer to conceptualize and implement a transaction model for
the application from scratch each time a different model variant is needed, thus
of course creates a problem, since it results in inefficiency in time and resources.

The motivation of this Thesis is therefore that of providing an intermediate

solution to the problems mentioned above. This can be done with the creation of
a meta-model which allows the developer to either build a custom model for a
transactional application under development, or use a pre-implemented
template, in both cases abstracting him from the core implications of transaction
handling. This would make it possible for a developer to implement the separate
Units of Work in a conventional manner, without having to cater for nesting,

transaction dependencies, delegation, and all issues related to transactions. The
transactional behavior of each Unit of Work would then be expressed separately,
possibly with the help of a specialized descriptor or scripting language. This

solution in essence would be similar to the structure presented in conTract1
models, while offering a framework, which houses similar concepts to the ACTA

framework2. Such a meta-model would allow developers to have no restrictions
on the manner of operation of the transactions required by the application under
development; since a possible open – source approach could possibly be taken to

enhance extensibility of the meta-model itself. Extensibility may also be applied
to transactional behavior, by converting the UOW behavior script into an
extensible one. Further development may include a graphical application which

1 A particular type of transaction model. (See Appendix A1)
2 A particular type of transaction framework. (See Appendix A)

Supervisor: Mr. Patrick Abela Author: Justin J. Spiteri

Title: Long Lived Transactions Page 6 of 18

allows the developer to graphically represent Units of work, together with the
transactional behavior needed for the system in question, thus reducing the
learning curve for the developer.

1.2 Background

The following chapter provides a very brief review of the literature carried out,
which includes both a theoretical overview of transactions and transaction

modeling, and an analysis of the currently available solution specifications.

• What is a transaction?

A transaction in general, may be defined as a dedicated business oriented
interaction between two or more parties, in which all stakeholders involved will
be affected in some way. A more technical definition of a transaction can be
found on Microsoft’s MSDN web site, which claims the following:

 “A transaction is a set of one or more related tasks that either succeed or fail as
a unit. In transaction processing terminology, the transaction commits or
aborts.” – MSDN (Microsoft)

Transactions can be classified into two main categories, atomic transactions and
Long Running Transactions. As Mike Chapple says in his article entitled “Your
Guide to databases” (www.about.com);

“The concept of atomic transactions is based on one of the oldest but still
relevant concepts of database theory, that is, the idea of ACID properties.”

In fact, in order to adhere to these properties, any resources which are shared

between multiple transactions must be protected, and thus locked when in use
by one user. A typical Atomic transaction, being ACID based, takes a short
amount of time to complete, and is usually based on a “commit or reject”
philosophy. On the other hand, long running transactions have a higher degree
of complexity than Atomic transactions, due to the fact that a single long running

transaction can be made up of several stake holders, and potentially lasting
hours or even days. This length of time makes the resource locking manifested
in ACID based transactions inappropriate, since situations can arise where all

resources are blocked, with no conclusive transactions, as they all wait for each
other to free resources, in a massive inter-networked deadlock. Besides, as in a
long running transaction, partial roll back of a part of the transaction may be

Supervisor: Mr. Patrick Abela Author: Justin J. Spiteri

Title: Long Lived Transactions Page 7 of 18

needed, thus, invalidating the concept of the scoping mechanism present in ACID
based transactions which provides the “all or nothing” semantics. These
differences present various implications when trying to build software models
which handle these types of transactions. Following are two illustrations of both
types of transactions:

Figure 1: A typical travel agent system (Ref: JSR95)

In this scenario the process consists of parallel running transactions, where each
module, being an atomic transaction, has an impact on any other transaction
running in parallel to it, thus full rollback and recovery capabilities are a must.

Thus a long running transaction can also be composed of multiple ACID based
transactions, which do not manifest ACID properties when considered as a
whole. This situation brings up the following question: Is a completely ACID
based system good or not?.

As seen in the example above, it’s practically impossible to follow ACID
properties throughout the compound transaction as a whole. Thus it can be said
that the ACID model, even though powerful for short lived transactions, has its
limitations when it comes to long lived and compound transaction scenarios.

The solution to this issue lies in taking a different approach when
modeling the activities of the solution. It has been confirmed that strict ACID
models are not the best way to tackle the problem. However should ACID
properties be completely scrapped in the search for a new model which handles
long lived transactions or should alternative models which extend the ACID
model’s capabilities be defined? In actual fact, there are various generic model
template definitions which are aimed at solving this problem. These include

nested model designs, split join model designs, cooperative transaction group
model designs, and SAGA model designs amongst others. Most of the models or
model specifications available today fall under, or are variants of, one of these
model categories. More detail about each category will be given through further
documentation. However it can be stated that the most discussed category is

certainly SAGA. SAGA’s notion is that of loosening the rigidity of strict ACID
properties, however not completely scrapping them. In fact a typical SAGA:

Supervisor: Mr. Patrick Abela Author: Justin J. Spiteri

Title: Long Lived Transactions Page 8 of 18

“approximates atomicity over a long period of time, however not providing
the isolation property”. (“Acid is good, take it in short doses” – Mark Little,
Arjuna Technologies)

 This leaves us with a twofold problem; selecting a suitable transaction
model, and selecting a suitable framework in which the model may operate.

• Transaction Models

There is a vast amount of transaction models present today, some
extending ACID models, and some which have been redesigned from the

ground up. These can be categorized into various sets, according to their
different nature and properties. Below is a comprehensive list of the

standard, most commonly renowned transaction models, categorized into
their various sets. Most of these models are currently available as
specifications on www.omg.org.

o Traditional Transaction Models

� Two Phase Commit Model

o Advanced Transaction Models

� Nested Transaction Model
� Saga Transaction Model
� Split Join Transaction Model
� ACTA Model/Framework

o True Advanced Transaction Models

� BTP Atom Model
� BTP Cohesion Model
� WS-AT Model
� WS-BA Model
� TX-ACID Model
� TX-LRA Model
� TX-BP Model
� conTract Model
� Bourgogne Model

Supervisor: Mr. Patrick Abela Author: Justin J. Spiteri

Title: Long Lived Transactions Page 9 of 18

Note: There are several other models in existence which have not been
referenced here, due to the fact that there are too many. Such models include
the DOM Model, Flex Transactions, the CORD model, Cooperative Transaction
Hierarchy Models, and H-Models amongst others. An accurate review of each of
these models can be found in Marek Prochazka’s PHD thesis entitled “Advanced
Transactions in Component Based Software Architectures.” These models are
based on transaction models classified as “Advanced transaction models”, and do
not introduce new concepts.

• Transaction Framework Selection

Assuming that a transaction model has been selected, the second part of the
problem involves finding a way in which the solution can be implemented using

the selected model/s. As with the choice of a model, choosing a framework in
which to implement transaction handling is an application specific task.
Following is a list of reviewed transaction framework specifications.

� Activity Service Specification (IBM/SUN)
� Oasis Business Transaction Protocol Specification
� Oasis OTS Specification.
� Web Services Composite Application Framework Spec.
� Web Services Business Administration Framework Spec.
� ACTA Model/Framework

While implementation attempts exist for most of these frameworks, no really
practical application can be found which enables developers to construct a
system which supports Long Lived Transactions in an easy manner. This

resulted in the motivation for this project, which has been described in the
previous section.

P.T.O.

Supervisor: Mr. Patrick Abela Author: Justin J. Spiteri

Title: Long Lived Transactions Page 10 of 18

1.3 Aims and Objectives

The main objective in this project is that of providing a solution to the problem
described in the previous section, through a meta-model which provides
developers a way of expressing workflow of a long lived transaction, thus

applying it to the desired application. This would allow developers to either
define their own custom compound transaction models, or use ready made
templates. The following further objectives must be met in order for the project
to be successful:

• Advanced Research on Current technologies.

• Development of a Workflow Descriptor Language.

• Abstraction of Transaction Business Logic from the Application Developer.

• Provision of solution which integrates transactional modules with
Workflow.

• Provision of overall simplicity and flexibility of use of the solution.

1.4 Methods

The meta-model solution can be developed by developing a Workflow
Descriptor, which could possibly consist of a marked up language similar to a
typical scripting language. Primitives and keywords for this language would

allow developers to define behavioural characteristics and interdependencies of
each of the transactionally relevant modules of the system under development
through a simple script. The desired result would be that advanced Workflows
could be easily modeled by conventional developers, without needing
professional knowledge in the subject, thus abstracting the transactional

business logic issues away from the developer, having separated them from the
actual application code.

Upon system integration, the script is parsed, and the transactions within
the system are run using sequence defined by the script. Thus the script can be
said to wrap around an application’s transactionally relevant modules thus
providing a very flexible framework, in essence similar to J2EE’s Java Beans

Supervisor: Mr. Patrick Abela Author: Justin J. Spiteri

Title: Long Lived Transactions Page 11 of 18

framework, however handling long lived transactions. The model may possibly be
based on a selection of OCCAM primitives or other Pi-Calculus based Languages,
and similar amongst others, due to their rigid structure, and extensive support
for parallel running transactions. Below is a diagram which illustrates the main
concept of the solution:

Figure 2: Core System Function

The coordinator module would be responsible for parsing the script, and
executing each application module accordingly. The instructions contained in the

Units of work are irrelevant to the coordinator module, since this is only
concerned with Workflow Coordination.

Supervisor: Mr. Patrick Abela Author: Justin J. Spiteri

Title: Long Lived Transactions Page 12 of 18

1.5 Deliverables

Deliverables for this project include the following components:

• FYP Proposal Sheet

• Inception Report

• Dissertation

• Synopsis

• Software Components

o Workflow Descriptor Language.
o Coordinator Module
o Framework which encapsulates developer’s
application.

o Possible GUI support for generation of script
and integration of modules.

P.T.O.

Supervisor: Mr. Patrick Abela Author: Justin J. Spiteri

Title: Long Lived Transactions Page 13 of 18

Chapter 2: Work Plan

This section illustrates a generalized timeline for project milestones which include
the following steps:

• FYP Proposal
• General Research about the subject.
• Identification of Problem.

• High Level Design of Solution.
• Research for Technologies which will be applied.

• Generation of Inception Report.

• Detailed System Design (Class Diagram Level)
• Development

• Testing

• Finalization of Dissertation

FYP Proposal 1 October 2005

General Research October – December 2005

Identification of
the Problem

Mid December 2005

High Level
Design of
Solution

Late December 2005

Technology
Research

Early January 2006

Inception Report Mid January 2006

Detailed System
Design

Mid January – Mid February 2006

Development Mid February 2006 – Mid May 2006

Testing Mid May – End of May 2006

Finalization of
Dissertation
Document

End of May 2006

Figure 3: Timeline

Please note that the dissertation has not been included in the table, since
dissertation writing is an ongoing process throughout the whole project.

Supervisor: Mr. Patrick Abela Author: Justin J. Spiteri

Title: Long Lived Transactions Page 14 of 18

Appendix A: General Information

Model conTract Model

Orientation Long Lived Transactions (CAD/CAM)

Released By Andreas Reuter – 1989

Description The contract model was one of the early attempts at
handling long lived transactions. It moves away from the
idea of ACID transactions, and makes use of the concept

of forward compensation.

The structure of the contract model revolves around
sequences of steps and scripts, where steps represent
simple Units of work, and scripts represent descriptors
which cater for behaviour of each unit of work with
regards to concepts like interdependencies, recovery
parameters, etc. The main idea in the contract model is
that of abstracting workflow issues completely to the
application programmer, since the script takes care of
this. The official definition of a contract model, as defined
by Andreas Reuter is the following:

“Contract is a consistent and fault tolerant
execution of an arbitrary sequence of predefined
actions (steps) according to an explicitly specified
control flow description (script)” – Andreas Reuter

Pros • Caters for long lived transactions.
• Separates Units of work from system behaviour.

Cons • Is limited to forward recovery.

• Very complex to implement.

Model ACTA Model/Framework

Orientation Short/Long Lived Transactions

Released 1990 By Chrysanthis and Ramamritham

Description The ACTA model is based on the unification of the split
join, nested and cooperative transaction models. In their

specification paper, Chrysanthis and Ramamritham define

Supervisor: Mr. Patrick Abela Author: Justin J. Spiteri

Title: Long Lived Transactions Page 15 of 18

ACTA as being a framework which extends the
functionality of the amalgamation of these models, thus
allowing solutions which include hybrid custom models
which manifest unique behaviour, rather than a simply

new transaction model. What ACTA does is mainly :

“allow the definition of structure, and behavior of
transactions”, and provides;

“reasoning for the concurrency and recovery semantics of
the transactions”.

It can be considered more of a framework of models,
rather than just another model. The core of the ACTA
model semantics concentrates on the effects of a
Transaction on either another Transaction, or an Object,
including interdependencies between transactions,
conflicts, and delegation of information from one
transaction to the other.

Pros • Much more extensible than a conventional single
model system, since it allows hybrid solutions to

the models it contains.

Cons • Complex to visualize and implement.

Supervisor: Mr. Patrick Abela Author: Justin J. Spiteri

Title: Long Lived Transactions Page 16 of 18

Appendix B: Bibliography

News Sites:

Contains news on who released what protocol/standard/framework and when:

http://xml.coverpages.org/coordination.html#specs

Mark Little's Personal Blog Site:

http://markclittle.blogspot.com/2004_11_01_markclittle_archive.html

Mark Little's Web Log on Webservices.org:

http://www.webservices.org/ws/content/view/full/52229

Current Standards used by Arjuna Technologies:

http://www.arjuna.com/standards/

Articles:

Acid is good – Take it in short doses :

http://www.theserverside.com/articles/article.tss?l=AcidShortDoses

Business Transaction Protocols – Transactions for a new age :

http://webservices.sys-con.com/read/39607.htm

An Overview of Support for Extended Transaction Models in J2EE

http://www.developer.com/java/ent/print.php/1136071

Supervisor: Mr. Patrick Abela Author: Justin J. Spiteri

Title: Long Lived Transactions Page 17 of 18

A collection of articles and papers from Arjuna Technologies :

http://www.arjuna.com/library/reading.html

Corba VS SOAP based Webservices

http://searchwebservices.techtarget.com/ateQuestionNResponse/0,289625,sid26

_gci930913_tax298966,00.html?bucket=ETA

JTA and JTS:

http://www.developer.com/java/ent/article.php/2224921

A comparison of Many Transaction Frameworks by Mark Little:

http://www.webservices.org/index.php/ws/content/view/full/52213

Framework Specifications:

JSR109 Web services for J2EE Documentation:

http://jcp.org/en/jsr/detail?id=109

JSR95 Activity Service Specification:

http://jcp.org/en/jsr/detail?id=095

Java API for XML Transactions

http://www.jcp.org/en/jsr/detail?id=156

WS-CAF :

http://webservices.sys-con.com/read/39936.htm

WS-Coord :

http://www-128.ibm.com/developerworks/library/specification/ws-tx/

Implementations:

Supervisor: Mr. Patrick Abela Author: Justin J. Spiteri

Title: Long Lived Transactions Page 18 of 18

Novell Bank Implementation:

http://www.novell.com/documentation/extendas50/jbroker/tm/examples/docs/re

sBank-1.htm

An Implementation of WS-AT standards for IBM's websphere:

http://www.alphaworks.ibm.com/tech/wsat

HP Arjuna Transaction Service with JBOSS and CORBA based on JSR95 :

http://www.arjuna.com/products/arjunats/

Models:

Two Phase Commit Model

http://www.jguru.com/faq/view.jsp?EID=20929

ACTA Model

http://swig.stanford.edu/pub/summaries/database/acta.html

Split/Join Model

http://www2.parc.com/csl/groups/sda/projects/reflection96/docs/barga/reflect/n
ode10.html

