

A Meta Model for Multiple Transaction Models

Final Year Project

University of Malta

Board of Studies for Information Technology

Department of Computer Science and Artificial Intelligence

Justin Spiteri

B.Sc. I.T. (Hons.) Year 4

May 2006

A Meta Model For Long Lived Transactions

 Page 2 of 175

Declaration

Plagiarism is defined as “the unacknowledged use, as one’s own work, of work of
another person, whether or not such work has been published” (Regulations
Governing Conduct at Examinations, 1997, Regulation 1 (viii), University of
Malta).

I / We*, the undersigned, declare that the [assignment / Assigned Practical Task
report / Final Year Project report] submitted is my / our* work, except where
acknowledged and referenced.

I / We* understand that the penalties for making a false declaration may include,
but are not limited to, loss of marks; cancellation of examination results;
enforced suspension of studies; or expulsion from the degree programme.

Work submitted without this signed declaration will not be corrected, and will be
given zero marks.

* Delete as appropriate.

(N.B. If the assignment is meant to be submitted anonymously, please sign this
form and submit it to the Departmental Officer separately from the assignment).

_________________________ ___________________________
Student Name Signature

________________ ______________________________________
Course Code Title of work submitted

Date

A Meta Model For Long Lived Transactions

 Page 3 of 175

Abstract

The main aim of this report is that of providing a solution which caters for a
particular area of the field of transaction management; long running
transactions. The inspiration for this thesis was mainly the fact that after an in
depth research was carried out, a series of shortcomings in current solutions was
noticed.

The main issue found is that current software solutions mainly adopt one
particular transaction model, and thus a software solution is tied down to
providing only one type of transaction management service. This greatly reduces
the range of applications which may make use of the software solution, and is
considered to be the main issue to be addressed in this thesis: A solution which
may provide a transaction management service using multiple transaction
models.

A secondary issue which has been identified and tackled includes the high
complexity involved in building software which uses current transaction
management solutions. An effort has been made to create a simple solution
which is easy to understand and integrate into the needed applications.
Techniques used in order to achieve this include the use of the globally
renowned XML language, and the introduction of open source concepts into the
proposed solution.

The artifact accompanying this dissertation includes the Implementation of the
Transit Model Solution, which is an open source transaction management system
designed with the intent of solving the issues identified in the current solutions.
Ample example applications are also included on the disk.

While the implementation is fully functional, its main purpose is that of a working
prototype, which proves the novel concepts proposed in this thesis.

A Meta Model For Long Lived Transactions

 Page 4 of 175

Acknowledgements

Firstly, I would like to thank my supervisor, Mr. Patrick Abela, who gave me
inspiration to choose Long Lived Transactions as my main research area,
together with all the necessary professional and technical support in a real world
working environment to make the project a successful one.

Secondly, I would like to thank Dr. Marek Prochazka (Charles University, Czech
Republic) and Mr. Mark Little (Hewlett Packard/Arjuna Technologies), for
remotely assisting me and exhaustively answering all the queries which I posed
to them.

Finally, I would like to thank Mr. Matthew Rizzo, Mr. Mark Herrera, Mr. Jeremy
Ellul, Mr. Christian Tabone, Ms. Maria Aquilina, Mr. Michael Usatchev, and all my
family and friends, who gave me invaluable assistance and support throughout
the whole Research & Development Process of the project.

A Meta Model For Long Lived Transactions

 Page 5 of 175

Table of Contents

Chapter 1: Introduction...12
1.1 Overview ... 12
1.2 Aims.. 12
1.3 Non Aims ... 13
1.4 Document Structure.. 13

Chapter 2: Literature Review ...15
2.1 Transaction Theory... 15
2.1.1 What is a transaction?.. 15
2.1.2 Types of Transactions .. 15
2.1.3 Transaction Modeling ... 17
2.1.4 Transaction Models .. 18
2.1.5 Common Properties of Transaction Models................................. 30
2.1.5.1 Transaction Modularization... 31
2.1.5.2 RollBack and Recovery Concepts .. 32
2.1.5.3 Transaction States... 33
2.1.5.4 Transaction Contexts ... 35
2.1.5.5 Transaction Inter Dependencies ... 35

2.2 Existing Transaction Management Solutions...................................... 37
2.3 Drawbacks of Current Solutions ... 39
2.3.1 Non Technical Issues ... 40
2.3.1.1 Choosing a Solution... 40

2.3.2 Technical Issues .. 41
2.3.2.1 Separating Transaction Models from Transaction Management
Systems 41
2.3.2.2 Standards in Long Running Transactions............................. 41
2.3.2.3 ACID Principles in Long Running Transactions 42

2.4 Real Life Scenarios ... 43
2.4.1 E-Top Up Facility.. 43
2.4.2 The Travel Agent Facility (Referenced from JSR 95) 43
2.4.3 Case Study Analysis – Interdependencies & Workflow................. 44
2.4.4 ACID is good – take it in short doses!.. 46

A Meta Model For Long Lived Transactions

 Page 6 of 175

2.5 The Problem .. 48
2.6 Motivation.. 49

Chapter 3: Requirements & Specification..........................50
3.1 Introduction ... 50
3.2 General Overview ... 50
3.3 Project Requirements.. 51
3.4 Transit Model Solution Specification ... 52
3.4.1 Semantics ... 52
3.4.2 Identification of Project Modules ... 52
3.4.3 Transit Scripting Language Specification 54
3.4.4 Transit Model API .. 55

Chapter 4: Architectural Concepts57
4.1 Introduction ... 57
4.2 General Architecture ... 57
4.3 Architectural Concepts .. 58
4.3.1 Transaction Modularization ... 58
4.3.2 Activity/LLT Transaction States ... 59
4.3.3 Transaction Contexts – Definition & Propagation 60
4.3.4 Transaction Inter Dependencies.. 61
4.3.5 Transaction Workflow Generation.. 62
4.3.6 Suspend/Resume Enabled Pluggable Model Architecture 62

4.4 Transaction Handling .. 63

Chapter 5: The Transit Scripting Language65
5.1 Introduction ... 65
5.2 Script Structure Considerations.. 65
5.3 Language Structure .. 65
5.4 Script Constructs .. 68
5.4.1 Script Constructs: The Model Tag.. 69
5.4.2 Script Constructs: Name Tag .. 70
5.4.3 Script Constructs: Global/Local Declaration Tag.......................... 71
5.4.4 Script Constructs: ActivityList Tag ... 71
5.4.5 Script Constructs: Counter Tag ... 72
5.4.6 Script Constructs: WorkFlow Tag... 73
5.4.7 Script Constructs: Segment Tag .. 74
5.4.8 Script Constructs: Begin Tag... 75
5.4.9 Script Constructs: For Do Tag ... 75
5.4.10 Script Constructs: If Then and Else If Tags 76
5.4.11 Script Constructs: Execute Tag ... 78
5.4.12 Script Constructs: Goto Tag .. 79

A Meta Model For Long Lived Transactions

 Page 7 of 175

5.4.13 Script Constructs: CMD Tag .. 80
5.4.14 Script Constructs: Main Tag .. 81

5.5 Examples ... 81

Chapter 6: The TransitModel API84
6.1 General Architecture ... 84
6.2 TransitModel.Structure.. 84
6.2.1 TransitModel.Structure – Use Case .. 85
6.2.2 TransitModel.Structure – Class Diagram..................................... 86
6.2.3 TransitModel.Structure.Activity.. 87
6.2.4 TransitModel.Structure.ActivityInfo.. 89
6.2.5 TransitModel.Structure.LLT ... 90
6.2.6 TransitModel.Structure.Info .. 90

6.3 TransitModel.TManager... 91
6.3.1 TransitModel.TManager.Logic ... 92
6.3.1.1 TransitModel.TManager.Logic.Mgr 92
6.3.1.2 TransitModel.TManager.Logic.TransitControlPanel 93
6.3.1.3 TransitModel.TManager.Logic.Coordinator........................... 93

6.3.2 TransitModel.TManager.LanguageBlocks.................................... 94
6.3.2.1 TransitModel.TManager.LanguageBlocks.IBlock 94
6.3.2.2 TransitModel.TManager.LanguageBlocks.Structs 95
6.3.2.3 TransitModel.TManager.LanguageBlocks.Main 95
6.3.2.4 TransitModel.TManager.LanguageBlocks.Execute................. 95

6.3.3 Concepts - Language Parsing & Workflow Generation................. 96
6.3.3.1 Language Blocks ... 96
6.3.3.2 Flow Lists ... 99
6.3.3.3 Parameter Passing... 99
6.3.3.4 Workflow Generation Logic .. 100
6.3.3.5 The Model Object .. 103

6.3.4 Concepts - Execution.. 104
6.3.4.1 Parameter Passing Revisited... 104
6.3.4.2 Accessing Variables Revisited ... 104
6.3.4.3 Variable Expression Evaluation ... 107
6.3.4.4 State Switching ... 107
6.3.4.5 Suspension and Resumption of an LLT.............................. 108
6.3.4.6 Suspension of an LLT – State Tracking.............................. 109
6.3.4.7 Resumption of an LLT – Activity Execution Simulation 110

Chapter 7: Conclusion ...113
7.1 Producing an Integrated Solution... 113
7.2 LLT Enabling a Typical Application using Transit 113
7.3 Transit Model Solution as an Open Source Project........................... 114
7.4 Transit Model Solution Assumptions and Limitations........................ 116

A Meta Model For Long Lived Transactions

 Page 8 of 175

7.5 Evaluation.. 117
7.6 Future Work... 118
7.7 Final Remarks .. 118

Appendix A: Glossary ..120

Appendix B: Class Diagram Listing124

Appendix C: Transit Script Examples127
A.) JSR 95 LLT Transaction Model (Ixaris Implementation) 127
B.) A Custom SAGA Model .. 128

Appendix D: Transit API Usage Instructions....................131

Appendix E: Example - Transit Enabled version of Skype .132
A.) Introduction ... 132
B.) Application Design & Implementation... 132
C.) Transaction Management .. 137
D.) Choosing a Model ... 141
E.) The Result ... 141

Appendix F: Example - Transit Enabled Holiday Planner...146

Appendix G: Transit API Testing148
A.) White Box Testing .. 148
Test 1: Code Walkthrough: Model Object Creation................................. 148
Test 2: Code Walkthrough: Model Object Execution: Normal 149
Test 3: Code Walkthrough: Model Object Execution: Suspend 150
Test 4: Code Walkthrough: Model Object Execution: Resume................. 152

B.) Black Box Testing ... 153
Test List: Exhaustive Testing.. 153

Appendix H: Application Requirements & CD Contents.....155
A.) Application Requirements.. 155
B.) CD-ROM Contents... 156

Appendix I: SourceForge Details157
A.) The SourceForge Application Form: ... 157

A Meta Model For Long Lived Transactions

 Page 9 of 175

B.) The SourceForge Approval E-Mail: ... 158
C.) The Transit SourceForge Web Site:.. 160

Appendix J: Bibliography & References...........................161
A.) Bibliography & References... 161
B.) Correspondence ... 166

Appendix K: Correspondence...167
A.) Michael Usatchev – Moscow Computer Science Academy................. 167
B.) Mark Little – Arjuna Technologies .. 168
C.) Marek Prochazka – Charles University Czech Republic 172

A Meta Model For Long Lived Transactions

 Page 10 of 175

Figures and Tables

Figure 2.1.4.1 Two Phase Commit... 18
Figure 2.1.5.1.1 Long Running Transactions and Activities 32
Figure 2.1.5.2.1 Pseudocode For a Generic Workflow Example 32
Figure 2.1.5.2.1 Two Phase Commit State Changes.. 34
Figure 2.1.5.2.2 Transaction States ... 34
Figure 2.1.5.5.1 Nested Model .. 36
Figure 2.1.5.5.1 Split/Join Model ... 36
Figure 2.1.5.5.3 Hybrid Model... 36
Figure 2.4.3.1 Skype E-Topup System ... 44
Figure 2.4.3.2 Flight Booking System (Ref JSR95) .. 45
Figure 2.4.4.1 SAGA Transaction Model Descriptor ... 47
Figure 3.4.2.1 Use Case Diagram – Transit Model Solution Integrated Example 53
Figure 4.2.1 General Architecture.. 57
Figure 4.3.2.1 State Transition Diagram .. 60
Figure 4.3.2.2 Activity States Example... 60
Figure 4.3.3.1 Activity Logic Pseudocode ... 61
Figure 4.3.6.1 FlowChart : The Nested Model... 63
Figure 5.3.1 Transit Script Template Preview ... 66
Figure 5.3.2 “N” Based Expression Example ... 67
Figure 5.3.3 Custom XML Based Constructs ... 68
Figure 5.5.1 Nested Model Transit Script ... 83
Figure 6.1.1 Package Diagram – The Transit Model .. 84
Figure 6.2.1.1 Use Case for TransitModel.Structure .. 85
Figure 6.2.2.1 Class Diagram for TransitModel.Structure................................. 86
Figure 6.2.3.1 Pseudocode for an Activity Workflow 87
Figure 6.2.3.2 Pseudocode For an Activity Method.. 88
Figure 6.3.1 Package Diagram for TransitModel.TManager 91
Figure 6.3.2 Component Diagram for TransitModel.TManager 92
Figure 6.3.2.1.1 Class Diagram for the IBlock Component............................... 94
Figure 6.3.2.3.1 Class Diagram for the Main Language Block........................... 95
Figure 6.3.2.4.1 Class Diagram for the Execute Language Block 96
Figure 6.3.3.1.1 Structure of the Workflow Language Block 97
Figure 6.3.3.1.2 Table for Transit Script Tag Classification 98
Figure 6.3.3.1.3 Sequence Diagram for Workflow Generation.......................... 98
Figure 6.3.3.4.1 FlowChart : Workflow Generation Part 1.............................. 100
Figure 6.3.3.4.2 FlowChart : Workflow Generation Part 2.............................. 101

A Meta Model For Long Lived Transactions

 Page 11 of 175

Figure 6.3.3.4.3 FlowChart : Workflow Generation Part 3.............................. 102
Figure 6.3.3.5.1 Resulting Model Object – Workflow Tree Structure............... 103
Figure 6.3.4.2.1 Parameter Passing in the Transit Model Solution 105
Figure 6.3.4.2.2 Pseudocode for getVariables() and setVariables() methods ... 107
Figure 6.3.4.6.1 Class Diagram for StateHolder Class.................................... 109
Figure 6.3.4.6.2 FlowChart : Suspension of an LLT 110
Figure 6.3.4.7.1 FlowChart : Resumption of an LLT 111
Figure 6.3.4.7.2 Screen Shot for the Transit Control Panel Resume GUI......... 112
Figure B1 TransitModel.Structure Class Diagram .. 124
Figures B2 & B3 TransitModel.TManager Class Diagrams 126
Figure CA1 JSR 95 LLT Transaction Model ... 128
Figure CB1 Custom Try Catch Saga ... 130
Figure EA1 Use Case: Transit Enabled Skype E - Top Up............................... 132
Figure EB1 Transit Enabled Skype Top Up Architecture................................. 133
Figure EB2 Architectural Changes to an Application 134
Figure EB3 CheckAllowedTopup Extending from the Activity Class 135
Figure EB4 CheckAllowedTopup Run Method ... 135
Figure EB5 Adding the TransitModel References... 136
Figure EB6 Creating the Long Running Transaction 137
Figure EC1 Running the Transaction.. 138
Figure EC2 Instantiating the Transit Resume GUI... 139
Figure EC3 The Transit Model Resume GUI Instance 140
Figure ED1 Choosing a Script for the Skype Topup Application 141
Figure EE1 Transit Enabled Skype Top Up Main Form 142
Figure EE2 Skype Top Up Manager Form - Idle .. 142
Figure EE3 Skype Top Up Form – New Transaction Started........................... 143
Figure EE4 Skype Top Up Form – Suspended + Transit Resume GUI 143
Figure EE5 Skype Top Up Form – Resumed/Running 144
Figure EE6 Skype Top Up Form – Resumed/Running 144
Figure EE7 Skype Top Up Form – LLT Committed... 145
Figure EE8 Skype Top Up Form – LLT Compensating.................................... 145
Figure F1 Holiday Planner Form – LLT Model ... 146
Figure F2 Holiday Planner Form 2 – LLT Model... 147
Figure GA1 Connection Error Simulation .. 151
Figure IA1 The SourceForge Application Form.. 157
Figure IB1 The Transit Project’s Sourceforge Site ... 160
Figure IB2 The Transit Project’s Sourceforge Utilities 160

A Meta Model For Long Lived Transactions

 Page 12 of 175

Chapter 1: Introduction

This chapter provides a general overview to the thesis, by introducing the reader
to the main research area, and defining project aims and non aims. A detailed
review of the organisation of the rest of the document is also provided.

1.1 Overview

This project can be considered as consisting of research and development in the
field of transaction management, where the main area which is tackled is that of
long running transactions.

There is are a number of supporting theories, concepts, models and frameworks
that exist for developers to create transaction enabled applications. If however a
developer needs to create a solution which handles complex transactions
including multiple parties, possibly spanning over a long period of time, various
difficulties may arise. The developer must have sound knowledge of advanced
transaction theory in order to deal with such a situation and learning transaction
theory is a very time consuming process, thus not being feasible.

This problem has led to the research and development of middleware solutions
which abstract transaction management issues from developers. Various
transaction management systems are currently available, each with distinct
features, advantages and disadvantages. This thesis analyses a selection of
systems from both a theoretical and a practical point of view in an effort to
produce a solution which eliminates the shortcomings of the current systems.

1.2 Aims

The main aim of this thesis is that of providing an innovative solution which aids
developers, in the creation of transaction enabled software systems through the
concepts of flexibility and ease of development. The process to achieve this aim
is fourfold, namely including:

A Meta Model For Long Lived Transactions

 Page 13 of 175

• An in depth research in the field transaction theory, concentrating
particularly on the area of long running transactions.

• Provision of a detailed analysis of existing solutions, or solution

specifications. These may include both commercial and academic
solutions.

• Proposal of novel concepts and ideas which enhance development of

transaction enabled applications.

• Full design and prototypical implementation of the Transit Model Solution,
which is a novel open source transaction management system, housing
concepts which are either novel or derived from the research carried out.
The main aim for the Transit Model Solution is that of providing a simple
solution which allows developers to create transaction enabled
applications, without the need of having expert knowledge in transaction
management.

1.3 Non Aims

This thesis has a purely educational nature, and thus it is not aimed at any form
of market, nor does it have a commercial purpose. Besides, while typical
commercial transaction handling systems are usually represented as physically
distributed middleware, it has been felt that physical distribution in this case is
out of scope. Effort on creating a distributed system would offset the main focus
of this thesis, leaving less time for research and development efforts on the
project’s actual aims and targets.

1.4 Document Structure

This document is divided into eight main chapters which offer complete coverage
of the project, from a brief overview to a detailed theoretical insight, to
implementation information and future work. The chapters are classified as
follows:

This chapter introduced the reader to the subject, giving very high level
information about the main area of research, and the aims of the project.

Chapter two caters for the theoretical aspect of the project. It has been
assumed that the reader possesses only basic knowledge about transactions in

A Meta Model For Long Lived Transactions

 Page 14 of 175

general, thus an ample literature review has been included in Chapter two. This
ensures coverage of basic transactional concepts, different types of transactions
present, transaction models and modeling techniques and associated
technologies currently in use on the market. This research also includes an
ongoing problem definition as the research builds up, culminating in a motivation
section which describes the issues present in current transaction theory and
solutions and proposes a solution, in an effort to solve these issues.

On the other hand, chapters three to six describe the conceptualization,
development and deployment of the proposed solution in a considerable amount
of detail, providing enough information for the developer reading this document
to use the solution in his own projects. Ample reference to a particular example
where the solution may be typically applied is also made.

Chapter seven includes a representation of the completed solution, together with
instructions on how to apply the integrated solution to a project. Future work
proposals of the project are also present, together with a project conclusion in
Chapter 8.

A series of Appendices is present at the end of the document, which are
referenced throughout the project. These include various types of material,
ranging from a set of glossary terms, which further explain the terminology used
in the project, to detailed class diagrams which further explains implementation
of the solution. A practical example application which makes use of the Transit
Model Solution is also present in the Appendices, together with testing
procedures, results, and research correspondence material which had been
archived.

A Meta Model For Long Lived Transactions

 Page 15 of 175

Chapter 2: Literature Review

This chapter provides both an in depth review of transaction theory and an
analysis of a selection of proposed transaction management system
specifications and implemented solutions. The direct result of this analysis is the
definition of the requirements of the Transit Model Solution.

2.1 Transaction Theory

2.1.1 What is a transaction?

A transaction in general, may be defined as a dedicated business oriented
interaction between two or more parties, in which all stakeholders involved will
be affected in some way. A more technical definition of a transaction can be
found on by Microsoft’s MSDN web site, which claims the following:

 “A transaction is a set of one or more related tasks that either succeed or fail as
a unit. In transaction processing terminology, the transaction commits or
aborts.” [32]

Microsoft’s definition brings us closer to the realm of electronic transaction
processing. Taking a practical example, if one tries to carry out a money transfer
operation from one bank account to another, the whole transaction is made up
from a series of smaller operations, which must all succeed in order for the
transaction in general to take place. More detail and real life scenario
descriptions are provided in the following sections.

2.1.2 Types of Transactions

As mentioned in Microsoft’s definition, transactions are “sets of one or more
related tasks”. A transaction is thus an action containing multiple tasks which
are coordinated to commit or to rollback any changes made to a body of data.
In a traditional transaction, this is done within the context of ACID properties. In
a long-lived transaction, although desirable, it may be difficult to maintain such

A Meta Model For Long Lived Transactions

 Page 16 of 175

ACID properties over a long period of time. From a business management point
of view, transactions are typically classified as being either Business to Consumer
(B2C) transactions, or Business to Business (B2B) transactions, where both B2B
and B2C transactions may be either atomic or long running.

• Atomic Transactions

As Mike Chapple says in his article entitled “Your Guide to
databases” [36]; “The concept of atomic transactions is based on
one of the oldest but still relevant concepts of database theory,
that is, the idea of ACID properties.” Acid properties give
transactions atomicity, thus creating distinctions between one
transaction and another, consistency, as in, results are either a
complete success or complete failure of the transaction; there are
no middle ways, isolation, which makes sure that in case of
multiple transactions taking place at the same time do not impact
each other’s operation, and durability, which refers to the fact that
any transaction which has been committed cannot be rolled back.
In order to adhere to these properties, any resources which are
shared between multiple transactions must be protected, and thus
locked when in use by one user. A typical Atomic transaction,
being ACID based, takes a short amount of time to complete, and
is usually based on a “commit or reject” philosophy.

• Long Running Transactions

Long running transactions have a higher degree of complexity than
Atomic transactions, due to the fact that a single long running
transaction can be made up of several stake holders, potentially
lasting hours or even days. This length of time makes the resource
locking manifested in acid based transactions inappropriate, since
situations can arise where all resources are blocked, with no
conclusive transactions, as they all wait for each other to free
resources in a massive inter-networked deadlock. Besides, in a
long running transaction, partial roll back of a part of the
transaction may be needed, thus invalidating the concept of the
scoping mechanism present in ACID based transactions, which
provides the “all or nothing” semantics. These differences present
various implications when trying to build software models which
handle these types of transactions.

A Meta Model For Long Lived Transactions

 Page 17 of 175

2.1.3 Transaction Modeling

Transaction modeling is the process in which, a real world transaction or set of
transactions are modeled into a business workflow and applied to a particular
transaction context (see following section for definition of context). The result of
this modeling process is the transaction model, which represents a formalized
way in which an atomic or long running transaction can be carried out.

Most transaction management systems present today are based on the
traditional two phase commit Transaction Model (see 2.1.4 for specification),
which caters for Atomic Transactions. These systems are often completely ACID
oriented, however, as Mark Little, from HP-Arjuna Technologies states in one of
his online articles;

“The structuring mechanisms available within traditional atomic transaction
systems are sequential and concurrent composition of transactions. These
mechanisms are sufficient if an application function can be represented as an
atomic, short lived transaction.” (Acid is good – Take it in short Doses) [5]

In simple terms, this statement refers to the fact that the transaction handling
facilities present as at date are able to cater adequately only for transactions of
an atomic nature. Consider a typical flight booking system as an example. The
client issues a ticket request to the airline company, and the company either
commits or denies the client’s request. However when it comes to long running
transactions, this mechanism based strictly on ACID properties is just not
adequate.

A practical example of the inadequacy of strict ACID based long running
transactions would be if one expands the flight booking system example into a
full travel agent system, where one may book a flight, train, taxi service, or even
hotel. If a client initiates a long running transaction where he wants to book
both a hotel room and an air ticket, the intricate dependencies between the two
transactions involved possess a much higher level of complexity than that of two
separate transactions, where a client first books an air ticket; and then a hotel
room, in two separate processes. What happens if the air ticket is committed,
but the hotel booking rolls back? Should a compensating mechanism be
introduced? How should a long running transaction recover? It can be seen that
long running transactions must have a specialized mechanism which caters
specifically for them, since a strict ACID based model such as the two phase
commit does not have the necessary logic to handle such transactions. Thus the
need for more advanced transaction models which is capable of handling these
issues is felt.

A Meta Model For Long Lived Transactions

 Page 18 of 175

2.1.4 Transaction Models

Transaction modeling can be considered to share its roots with database theory
since the two phase commit model, which is one of the oldest models, is directly
based on database ACID concepts. There is a vast amount of transaction models
present today, some extending ACID models and some which have been
redesigned from the ground up. These can be categorized into various sets,
according to their different nature and properties. Below is a comprehensive list
of the standard, most commonly known transaction models categorized into their
various sets. Most of these models are currently available as specifications on
www.omg.org.

o Traditional Transaction Models

Model Two Phase Commit (2PC/Atomic Model)

Orientation ACID/Atomic Transactions

Released 1980

Description Being one of the oldest transaction models around, it is
still the most powerful ACID based model, upon which
various other models are built, including transaction
models which cater for Long Lived Transactions. It
provides the typical ACID “all or nothing” semantics,
together with isolation in the case of compound parallel
transactions. Variants of the 2PC model include basic
rollback and recovery facilities, in case compound sets of
atomic transactions fail. A typical two phase commit
model could be graphically represented in the following
way:

RDBMS

RDBMS

A

B

C

C
om
m
it?

C
om
m
it?

Phase 1

Y
es
!

Y
es!

Figure 2.1.4.1 Two Phase Commit

In the first phase, process ‘C’ sends a commit request to
‘A’ and ‘B’. At this point in time, both ‘A’ and ‘B’ are

A Meta Model For Long Lived Transactions

 Page 19 of 175

locked, and no other transactional process can use them.
In the original 2PC algorithm, there is no time restriction
about time delay between the execution of the first and
second phases, and this may result in resources being
locked for too long, creating a starvation situation. While
this model ensures atomicity between multiple
participants, this same atomicity is applied too strongly in
the model, thus making it impractical for long lived
transactions. (Reference: www.webservices.org article:
The Smogasboard of Web Services Transactions – Mark
Little)[3]

Pros • Effective for Short Lived Transactions
• Offers “all or nothing” semantics (ACID Properties)

Cons • Inadequate for Long Lived Transactions

• Is prone to excessive resource locking, thus
making it not scaleable, this is due to its ACID-ity
being too strong.

o Advanced Transaction Models

The ACTA model specification defines advanced transaction models in
the following way:

“An advanced transaction consists of either a set of operations
on objects that execute atomically in a predefined order, or a set of
extended transactions with an explicitly given control related to the
notions of visibility, consistency, recovery, and permanence.” [19]

Thus, advanced transaction models are typically made up from
multiple traditional model based Units of Work. Following is a listing of
the models which belong to this category.

Model Nested Transaction Model

Orientation Long Running Transactions – Extension of ACID

Released 1980’s – Used in the ANSA project in 1993

Description Nested transaction models are an extension of the
traditional ACID based model which are capable of
handling long lived transactions. A nested transaction
consists of a tree of atomic transactions, starting with a
root which has child transactions. Child transactions can
in turn be parents to other sub-transactions. From an
external point of view, the tree can be considered as one
atomic transaction which follows strict ACID properties.

A Meta Model For Long Lived Transactions

 Page 20 of 175

The root transaction encapsulates all the tree structure,
making this view possible. On the other hand, children
still manifest atomic properties and are still isolated from
each other, each having an individual outcome; commit or
abort. However, a dependency on each child’s parent is
present since if the child transaction commits, the result is
inherited by the parent, which is in turn inherited by the
root or by other children if needed. If a parent with
multiple children aborts, its children which had committed
will also be aborted, breaking the ACID consistency rule.
Finally, all results will recurse to the root, and a final
commit or abort will be issued.

Pros • Provides efficient long lived transaction handling

• Promotes modularity, and concurrent execution of
transactions.

Cons • Does not cater very efficiently for durability.

Model Saga Transaction Model

Orientation Long Running Transactions – ACID model variant

Released 1980’s – Used in the ANSA Project 1993

Description SAGA based models are designed to specifically cater for
long running transactions. This is done by breaking down
a complex transaction scenario into various units of work
which consist of recoverable and compensating actions. A
typical SAGA based model uses backward compensation
semantics, where if a Unit of Work fails, the system is
returned to the state before executing that particular unit
of work. Since SAGAS may recursively consist of multiple
SAGAS, if one saga aborts, all its committed children must
roll back and take recovery actions in reverse order of
execution. Thus the nature of SAGA’s is that of providing
atomicity for long lived transactions at the cost of the loss
of isolation and consistency. The majority of transaction
models currently available are based on SAGA semantics,
or variants of it. The lowest level Units of work of a SAGA
model may essentially be a strict ACID based transaction.

Pros • Provides long lived transaction handling.

• Approximates atomicity for long lived transactions.

Cons • Does not cater for isolation between Units of Work.

• Difficult to conceptualize.

A Meta Model For Long Lived Transactions

 Page 21 of 175

Model Split Join Transaction Model

Orientation Long Running Transactions (Originally intended for CAD)

Released 1980’s – Used in the ANSA Project 1993

Description The split join transaction model was originally intended
for CAD/CAM purposes. It literally allows a transaction to
split into multiple sub transactions, which may or may not
be strictly ACID based. Split join models also allow
separate transactions to merge into one parent
transaction, thus giving it the possibility to be treated as
one Atomic transaction. In fact, a typical split join model
based activity starts with one atomic transaction which
spawns off multiple child transactions, each committing or
aborting. These then merge back into their parents until
just one atomic transaction remains, containing the final
result. The child processes may be either serial, where
their execution is sequential, or independent, where they
can be executed completely separately from each other.

Pros N/A (Due to CAD/CAM Nature)

Cons N/A (Due to CAD/CAM Nature)

o True Advanced Transaction Models

This category includes transaction models which make use of
established advanced transaction models with the addition of various
enhancements and variations, such as Unit of Work interdependency
determination parameters. This however means that the core concepts of
operations of operation are similar in context to that of advanced
transaction models.

Model ACTA Model/Framework

Orientation Short/Long Running Transactions

Released 1990 By Chrysanthis and Ramamritham

Description The ACTA model is based on the unification of the split
join, nested and cooperative transaction models. In their
specification paper, Chrysanthis and Ramamritham define
ACTA as being a framework which extends the
functionality of the amalgamation of these models. This
allows solutions to include hybrid custom models which
manifest unique behaviour rather than a simply new
transaction model. What ACTA does is mainly :

“allow the definition of structure, and behavior of
transactions”, and provides;

A Meta Model For Long Lived Transactions

 Page 22 of 175

“reasoning for the concurrency and recovery semantics of
the transactions”.

It can be considered more of a framework of models,
rather than just another model. The core of the ACTA
model semantics concentrates on the effects of a
Transaction on either another Transaction or an Object.
These effects may include interdependencies between
transactions, conflicts, and delegation of information from
one transaction to the other.

Pros • Much more extensible than a conventional single
model system, since it allows hybrid solutions to
the models it contains.

Cons • Complex to visualize and implement.

Model BTP Atom Model

Orientation Atomic Transactions (2PC Model Variant)

Released 2001 - Oasis Business Transaction Protocol Project

Description The atom model is a heavily customized version of the
2PC model, in which ACID semantics are still evident,
however with a much less strong presence. It also
consists of two phases, which are the ‘prepare’ phase, in
which each participant reports the current state of
availability of resources, and the ‘confirm’ phase, in which
a transaction is either confirmed or cancelled. ACID has
been abstracted from this model by not defining
implementation details of the ‘prepare’, ‘commit’, and
‘cancel’ operations. These may be implemented at a
higher level business logic.

Another major change from the 2PC model is the fact that
business logic decisions have been inserted in the
transition between the two phases. This allows the user
to have complete control over transaction timing from the
application level, as opposed to the original 2PC
algorithm. Nevertheless the ACID nature of the atom
model is still shown in its output which is guaranteed to
be consistent, where all stakeholders in a compound
transaction within the atom model will have one common
outcome, success or failure. The Atom model is a subset
of the Cohesion Model, and is used for strictly
transactional Units of Work. (Reference:

A Meta Model For Long Lived Transactions

 Page 23 of 175

www.webservices.org article: The Smogasboard of Web
Services Transactions – Mark Little) [3]

Pros • Aids the Cohesion Model to cater for LLT.

Cons • Does not cater for isolation between UOW.

Model BTP Cohesion Model

Orientation Atomic & Long Running Transactions

Released 2001 – Oasis Business Transaction Protocol Project

Description The cohesion model has been introduced in order to cater
for long running transactions. Its composition is made
entirely from a collection of one or more atom model
based Units of Work, which explains the origin of the
name cohesion. While each individual atom based unit
follows ACID traits, the cohesion model combines the
units together in such a way so as to relax atomicity, and
allow a business logic level implementation of the
‘prepare’, ‘confirm’, and ‘cancel’ operations which each
Atom Unit will use. This allows the cohesion model as a
whole to move away from 100% consistency, since its
member Atom Units may each have different outcomes,
breaking the ACID rule of complete success or failure.
This allows the efficient execution of long running
transactions, where activity services are represented as
atoms/Units of Work each of which is registered to the
cohesion. These units may undergo a series of confirm,
cancel operations as the business process moves on,
finally reaching a global confirm state which had been
pre-set at business logic level. The global confirm state is
set by defining a set of states for a subset of units in the
cohesion. When global confirm is reached;

“the cohesion collapses down to being an atom, all
members of the confirm set see the same outcome” –
(Mark Little, Arjuna Technologies)[3]

Pros • Caters for Long Lived Transactions.
• Highly generic model to suit a wide variety of

applications

Cons • Does not cater for isolation between Units of Work.
• Highly Complex to implement

Model WS-AT (Web Services – Atomic Transaction)

Orientation Atomic Transactions – Web Services

A Meta Model For Long Lived Transactions

 Page 24 of 175

Released August 2002 – Microsoft, IBM, BEA WS-C/T Project

Description WS-AT is an extension of the 2PC Model, however still
with the same purpose of servicing Short Lived
Transactions. The logic behind WS-AT is very similar to
2PC and BTP’s Atom Model. Transaction-aware system
resources such as databases are registered by the activity
service as members of the transaction process. This
allows the resource to be updated constantly with the
transaction’s outcome.

WS-AT also addresses the issue of Durability by providing
a synchronization protocol which caters for
communication of the business process with a persistent
system resource such as a database, thus making it
possible to dump the business processes’ memory cache
onto the database. (Reference: www.webservices.org
article: The Smogasboard of Web Services Transactions –
Mark Little)[3]

Pros • Caters for Durability Issues.

• Provides Interoperability – Web Service Oriented

Cons • Is not suitable for long running transactions

Model WS-BA (Web Services – Business Activity)

Orientation Long Running Transactions – Web Services (Forward
Compensation Based)

Released August 2002 – Microsoft, IBM, BEA WS-C/T Project

Description The WS-BA model is dedicated towards handling long
lived transactions. The first noticeable feature in this
model is that it does not manifest full ACID behaviour.
This is achieved by not allowing any resource locking to
occur. This makes it possible for transactions to span
over any necessary amount of time to complete, without
causing deadlocks. One ACID property still evident in this
model is consistency of results, which is kept throughout
a business activity with the aid of forward compensation
actions which are catered for at service level.

In this model, the Business Activity may be partitioned
into tasks which act as parents to groups of Units of
Work. This gives the activity control over which units
UOW’s to commit or rollback by sending execute
commands to the respective units. A reporting system
which allows the individual units to inform the parent task

A Meta Model For Long Lived Transactions

 Page 25 of 175

whether it is possible to rollback an activity or not is also
present. This Parent-Child behaviour between the
Business Activity and Unit of Work enables the Business
Activity as a whole to proceed, not bothering about each
and every Unit of Work’s failure; this is taken care of by
each parent task.

Pros • Caters for Long Running Actions
• Has been designed with Inter Operability in mind.

Cons • Has been designed to run on a system which is
closed source.

Model TX-ACID (WS – ACID)

Orientation Atomic Transactions – Web Services

Released August 2003 - Sun, Oracle, Arjuna WS-CAF Project

Description The TX-ACID model can be considered to be nearly a
mirror image of the WS-AT protocol described above, with
scarce differences which have no significant relevance to
the method of operation of the models. One would ask,
why have two nearly identical models been made? This
situation is merely a solution to a political complication
between closed source and open source beliefs, since the
TX-ACID has been designed by companies who promote
open source development, while WS-AT has been
developed by companies with a closed source philosophy.

Pros • Caters for Durability Issues.
• Provides Interoperability – Web Service Oriented

• Has been designed with open source as a
background concept.

Cons • Does not cater for long running transactions

Model TX-LRA (WS-LRA)

Orientation Long Running Transactions – Web Services (Forward
Compensation Based)

Released August 2003 – Sun, Oracle, Arjuna WS-CAF Project

Description Again having origins due to political issues, the TX-LRA
coupled with the TX-BP defined below is a direct
competitor of the WS-BA Model. TX-LRA is dedicated
towards handling Long Running transactions. An LRA
based business process may be split up into various sub
tasks, each of which in itself is an LRA Unit of Work thus
having a Parent-Child relationship similar to the BTP
Cohesion model’s subdivision of tasks. LRA also caters for

A Meta Model For Long Lived Transactions

 Page 26 of 175

triggering the necessary compensation actions using
forward compensation semantics; however
implementation details of these actions are not catered
for by this model.

Pros • Caters for Long Running Transactions

• Provides Interoperability – Web Service Oriented
• Has been designed with open source as a

background concept.

Cons • Complex when compared to the BA Model

Model TX-BP (WS-BP)

Orientation Long Running Transactions – Web Services

Released August 2003 – Sun , Oracle, Arjuna WS-CAF Project

Description TX-BP is the top level of a system of three models, TX-
ACID, TX-LRA and itself, which together provide an
enterprise solution for distributed long running transaction
handling. TX-BP is not exactly a model in itself, but
rather a container which may consist of various
transaction models, amalgamated together in a typically
distributed manner. The BP Model constitutes a recursive
hierarchy, where one business process is split into
business tasks, which are essentially transactional Units of
Work. Each task is part of a business domain, which is a
top level entity comprising of other business sub-domains,
business processes, or individual tasks/units of work. In
essence, a business domain constitutes a transaction
model.

Pros • Caters for Distributed LLT’s using possibly multiple
models.

Cons • Highly complex to implement (contains over 40
messages in its protocol)

Model conTract Model

Orientation Long Running Transactions (CAD/CAM)

Released By Andreas Reuter – 1989

Description The contract model was one of the early attempts at
handling long lived transactions. It moves away from the
idea of ACID transactions, and makes use of the concept
of forward compensation.

The structure of the contract model revolves around
sequences of steps and scripts, where steps represent

A Meta Model For Long Lived Transactions

 Page 27 of 175

simple Units of work, and scripts represent descriptors
which cater for the coordination of each unit of work.
Coordination is defined using constructs such as
transaction interdependencies, recovery parameters, etc.
The main idea in the contract model is that of abstracting
workflow issues completely to the application
programmer, since the script takes care of this. The
official definition of a contract model, as defined by
Andreas Reuter is the following:

“Contract is a consistent and fault tolerant execution of an
arbitrary sequence of predefined actions (steps) according
to an explicitly specified control flow description (script)”
– Andreas Reuter [35]

Pros • Caters for long running transactions.

• Separates Units of work from coordination.

Cons • Is limited to forward recovery.

• Very complex to implement.

Model Bourgogne Model

Orientation Long Running Transaction Handling

Released 2000 – Marek Prochazka (PHD Project)

Description The Bourgogne model has been specifically designed in
order to cater for long running component based
transaction systems. It has been developed by Marek
Prochazka as a PHD project at Charles University, Czech
Republic. Bourgogne Transactions can be considered an
extension of the ACTA framework. This project is mainly
targeted at providing an extensible model which allows a
degree of control over subtle attributes such as
transaction interdependency, resource sharing, and
delegation concepts. In fact in his thesis, Prochazka
describes Bourgogne Transactions in the following way:

“Bourgogne Transactions stem from the transformation of
ACTA building blocks” – Marek Prochazka[29]

and

“Bourgogne Transactions comprise:

- A new transaction model, which specifies significant
events, operations executed upon data objects, the
lifecycle of a transaction, and the environment of a

A Meta Model For Long Lived Transactions

 Page 28 of 175

transaction.

- A new transactional API that allows the management of
transaction demarcation. The API is used by clients and
also by containers, which use it for managing container-
demarcated transactions.

- Support for employing new techniques in container-
interposed transaction settings. Namely, Bourgogne
Transactions introduce a set of transaction attributes for
specifying transaction propagation policy, including
declarative transactions in the component interface.” -
Marek Prochazka [29]

Pros N/A

Cons N/A

Model JSR 95 Model

Orientation Long Lived Transaction Handling

Released No Commercial Implementation as Yet

Description The LLT Model has the purpose of providing a framework
which handles Long Running Transactions in a distributed
industrial environment. It houses concepts based on the
ACTA and SAGA models, where a Long running
transaction is defined by a series of activities.

Activities are executed in sequence, and each activity may
commit, or rollback. In this model, the success of a long
running transaction is determined by the commission of
all its child activities. The following set of rules applies for
this model:

• If a child activity rolls back, all the previous child
activities must roll back, thus failing the long
running transaction.

• If rollback of an LLT is initiated, a compensating
action must be carried out for any activity which
has already committed, since this cannot roll back.

An interesting feature introduced in the LLT model is that
it has been structured in such a way, to enable
transaction management systems using this model to

A Meta Model For Long Lived Transactions

 Page 29 of 175

suspend or resume transactions. If during execution of
an activity, a connection to a third party server fails, the
activity does not abort, but rather goes into a suspended
mode, which can be later resumed. This novel idea
greatly increases the notion of robustness in long running
transactions.

Please note that the terminology used for long running
transactions in the LLT model is the term “Long Lived
Transactions”.

Pros • Based on well established standards (ACTA &
SAGA)

• Supports Long Running Transactions

• Caters for rollback and recovery concepts

• Introduces the idea of suspension and resumption
of activities

• An effort is being made to release the model to the
open source community, which is desirable in the
research area.

Cons • The design of the model does not allow flexible
definition of a workflow but rather, it executes
activities in an LLT sequentially.

• Model must be hard coded into a transaction
management system implementation.

Model Cova Transaction Model

Orientation Long Running Transaction Handling

Released 2002 – Bell Labs Research: Lucent Technologies

Description The Cova Transaction Model is an effort by bell labs to
extend the idea of modeling long running transaction
using scripts. While the structure is similar to Ixaris’ LLT
Model, where a Long Running Transaction is made up by
a tuple of activities or units of work, the main difference is
that workflow is represented using a scripting language,
rather than hard coded into a sequential process. This
presents a significant advantage over other transaction
models, since it allows flexible definition of transaction
inter dependencies through the script, in a workflow style.

The main drawback of this model is that the script
consists of specially designed transaction oriented syntax,
which still requires solid knowledge about transaction

A Meta Model For Long Lived Transactions

 Page 30 of 175

theory in order to understand it completely. This still
does not completely abstract a top level developer from
transactional issues. Another drawback is the fact that
the script based model is tightly bound to one particular
transaction manager implementation designed by bell
labs, rather than being generic and usable by all. In fact,
the Cova model specification paper also includes the
transaction management engine’s specification. This goes
against desirable open source based concepts for
research projects.

Pros • ConTract based scripting approach to transaction
management

• Script allows flexible definition of transaction
Models, through a workflow styled
interdependency description.

Cons • Code not released to the open source community
• Script contains highly specialized transaction

oriented syntax (eg. “set dependency” commands,
“compensate forward” and “compensate backword”
commands).

Note: There are several other models in existence which have not been
referenced here, due to the fact that there are too many. Such models include
the DOM Model, Flex Transactions, the CORD model, Cooperative Transaction
Hierarchy Models, and H-Models amongst others. An accurate review of each of
these models can be found both Marek Prochazka’s PHD thesis entitled
“Advanced Transactions in Component Based Software Architectures.”, and in
Eman Anwar’s thesis entitled, “An Extensible Approach to realizing extended
transaction models”. These models are based on the models described in the
“Advanced transaction models” section above, and do not introduce new
concepts, but can be considered as hybrids of the above described models.

2.1.5 Common Properties of Transaction Models

When one sums up the generic properties of these models, a set of concepts
which are common to all models may be identified. These include the following
notions:

• Transaction Modularization

• Rollback and Recovery Handling
• Activity and LLT State Handling

• Transaction Context Definition and Propagation
• Transaction Inter Dependencies

A Meta Model For Long Lived Transactions

 Page 31 of 175

2.1.5.1 Transaction Modularization

The first thing which must be carried out in the when designing any transaction
model is that of assigning a proper structural transaction hierarchy. How are
transactions structured? What granularity is there with regards to transaction
complexity? It has been noticed that all the advanced and true advanced
transaction models share the following Transactional hierarchy;

• Long Running Transactions Revisited

The richest, or highest level transaction is the Long Running Transaction,
which has a compound nature and may extend over a long period of time
to complete. A long running transaction can be made up of several units
of work, which may or may not be transactional, and may or may not be
atomic. Various synonyms have been given to long running transactions
in the researched models, ranging from “long lived transaction” in the LLT
model, and “Compound Transaction” in SAGA and ACTA, to “Long Running
Transaction” in the WS-CAF project. In the Transit Model Solution
accompanying this thesis, Long Running Transactions will be referred to
as “Long Lived Transactions”, in order to avoid confusion in terminology.
Long lived transactions are typically physically be defined by
programmatic classes, which contain array lists of activities which form an
execution workflow.

• Activities (Units of work)

Activities, also referred to as Units of Work in various model specifications,
are the base component of a Long Lived transaction and may or may not
have a transactional nature. They also may or may not be ACID
compliant. The most important concept to grasp is that an activity in itself
consists of a physical structure, possibly a programmatically defined class,
which contains a series of methods and remote calls to external servers.
This series of methods creates a workflow which constitutes an execution
step in a long running transaction. The following diagram illustrates the
generic hierarchy of long running transactions and activities which is
shared by all advanced and true advanced transaction models researched:

A Meta Model For Long Lived Transactions

 Page 32 of 175

Figure 2.1.5.1.1 Long Running Transactions and Activities

2.1.5.2 RollBack and Recovery Concepts

When designing a model which is aimed at handling long running transactions,
rollback and recovery concepts must always be considered. These concepts
allow elegant recovery of a long running transaction, in case one of its activities
is unsuccessful. Consider the long running transaction in figure 2.1.5.1.1.
Assuming that this transaction is plugged into a model which executes its
activities sequentially, the workflow in this case will consist of the following:

public void Workflow()
{

 //Execute Activity 1
 //If successful Execute Activity 2
 //If Successful Execute Activity 3
 //If Successful Execute Activity 4
 //If successful set Long Running Transaction to successful
 //Else set Long Running Transaction to unsuccessful

}

Figure 2.1.5.2.1 Pseudocode For a Generic Workflow Example

As execution progresses, activities are confirmed sequentially. If all activities are
successful and no problem arises, the long running transaction is successful, and
the system returns to an idle state. However, what happens if activity four fails?
When executing a long running transaction such as this one the following rules
apply in case of failure of the transaction:

A Meta Model For Long Lived Transactions

 Page 33 of 175

• A “cleanup” process must be carried out in order to release resources
which have been occupied by the transaction and each of its sub
activities.

• An activity which fails can be reversed (rolled back) in order to clear out
any resources which it is currently using.

• An activity which is confirmed (committed) cannot be reversed (rolled

back).

• If a failed long running transaction contains activities which have been
confirmed, they cannot be rolled back. However some form of recovery
(compensating) action must be taken for each activity.

Thus if transaction four fails, it is rolled back, while transactions three, two and
one must be recovered in some way since they have been committed. Rollback
on a committed activity is prohibited for a simple reason. Let us assume that
activity two is actually a flight booking process. Once a ticket is confirmed, in
normal circumstances, it cannot be cancelled and re-funded. Thus a
compensating action must be taken, where another flight ticket is found for the
customer in question, while moving the old ticket to a “last minute offers”
section. If no action is taken, the ticket would not be used, resulting in an empty
seat on the flight. While this is just one context, it explains why rollback on a
committed activity is impossible. It also explains why rollback and recovery
concepts are necessary in long running transactions. If no compensating action
is taken on committed activities, or no rollback occurs on failed activities, a great
deal of resources would go wasted when a Long Running Transaction Fails.

With the introduction of rollback and recovery, the states in which a transaction
may be are not limited any more to “committed” and aborted”, as was the case
in two phase commit. This results in a rise in complexity when handling
transaction states, also due to the fact that different terminology is used to
describe similar concepts. Recovery is also called compensation, or Forward
Compensation in some models, while rollback also has the “Backword
compensation” synonym amongst others. The variance in terminology, together
with the expansion from two base states to multiple states may result in
confusion and thus the need for proper handling of transaction states is felt.

2.1.5.3 Transaction States

A transaction state is an indicator which refers to the current status in which a
particular atomic or long running transaction currently is. Typically, a transaction
starts off in an idle state and changes state as the transaction workflow

A Meta Model For Long Lived Transactions

 Page 34 of 175

executes. Consider the previous example of Two Phase Commit model
description:

RDBMS

RDBMS

A

B

C

C
om
m
it?

C
om
m
it?

Phase 1

Y
es
!

Y
es!

Figure 2.1.5.2.1 Two Phase Commit State Changes

The state changes for transaction “C” are from “idle” to “committed”, of from
“idle” to “aborted” when implemented using two phase commit; thus the 2PC
model can be said to have three transaction states in all, idle, committed, and
aborted. This set of states provides a standard interface which enables
transaction management systems which implement 2PC to monitor the progress
of a particular transaction. It would be very difficult for the Transaction
Management software implementing the model, to later interpret the outcome of
the transaction execution if some form of standard state handling is not
introduced, since there would be no way of monitoring transaction progress. For
this reason, a series of transaction states are used in each model. Consider the
following models:

Model State List

2PC Transaction Idle
Transaction Committed
Transaction Aborted

JSR 95 Transaction Idle
Transaction Committed
Transaction Rolled Back
Transaction Compensated
Transaction Suspended

Cova TM Transaction Idle
Transaction Currently Running
Transaction Completed
Transaction Aborted
Transaction Failed

Figure 2.1.5.2.2 Transaction States

A Meta Model For Long Lived Transactions

 Page 35 of 175

The concept of transaction states is present in all researched models; however as
shown in the table above, each model utilizes a different set of states, which
have varying properties and terminologies. The state of a transaction may also
be represented by a subset of states of multiple units of work or activities. For
example, while in the two phase commit, the state of transaction C would be
represented by an one state value, x, in the Cova and JSR 95 transaction models,
the state of a transaction C would be represented by an n tuple (x1, x2, …, xn)
where each xi represents the value of the state of a unit of work or activity which
makes up the long running transaction.

While structure, properties, and terminology of transaction states may differ from
one model to another, they share a common scope, which is that of providing a
standard gauge mechanism, or interface which allows a transaction management
system to track a transaction’s progress.

2.1.5.4 Transaction Contexts

Transaction contexts represent a particular scenario in which a Long Transaction
is executed. This directly affects the manner and sequence in which the
Activities which make up the Long Lived Transaction are executed. In fact, all
activities which make up a long running transaction share the same transactional
context through which the various activities are coordinated to switch from one
state to another according to conditions posed by the model or at runtime. In
current solutions, transaction contexts have been described in various ways,
ranging from hard coded programming structures, to scripting languages, as in
the case of Contract Models, and the Cova Transaction Models. Transaction
context definition is closely related to the definition of transaction inter
dependencies.

2.1.5.5 Transaction Inter Dependencies

Inter dependencies in transactions are synonymous with the concepts of
rollback, recovery, and compensation. Dependencies between activities may be
used to primarily define execution sequence, and activity nesting. Consider a set
of four Atomic units of work, named A, B, C, and D respectively. Each of these
units is a two phase commit transaction, however if they are orchestrated into a
workflow according to the nested transaction model, the result would be the
following:

A Meta Model For Long Lived Transactions

 Page 36 of 175

Figure 2.1.5.5.1 Nested Model

A hierarchy is formed where A is at the top level, and D is dependant on C, B,
and A respectively. On the other hand, if they are orchestrated in a way which
complies to the split join model, one possible scenario is the following:

Figure 2.1.5.5.1 Split/Join Model

In this representation, unit A splits into the parallel execution of unit B and C,
which in turn merge into unit D. Now consider having eight atomic units of
work, A to H, and using them to orchestrate a compound unit of work using both
nested and split/join concepts. The result would be the creation of a hybrid
model which enables encapsulation of Units into each other, and Parallel or
sequential execution.

Figure 2.1.5.5.3 Hybrid Model

A Meta Model For Long Lived Transactions

 Page 37 of 175

Now consider adding a third and fourth model, and generating combinations of
multiple hybrids of each of them. This conjunction of models would create an
extremely flexible and powerful way of expressing transaction workflows, where
the solution would not be dependent on a particular model, but on the Meta-
Model which is used to express the workflow. Thus ideally, a list of the most
common constructs should be supported by the scripting language, thus solving
the problem of the narrow applicability of a transaction handling solution. The
most common transaction primitives include the following:

• Nesting of Units of Work

• Sequential Execution

• Parallel Execution
• Recovery & Compensation Concepts

• Rollback Concepts

These concepts all point towards the creation of the Scripting Language which
models the execution of a transaction through a workflow style interdependency
definition as the best possible solution for Long Running Transactions.

2.2 Existing Transaction Management Solutions

There are various transaction management systems which implement one of the
models which we have researched. Currently, most systems are available as a
specification, and are not yet implemented. This is due to the fact that while well
defined standards are present for atomic transaction handling, this is not the
case for long running transaction management; the area is still very fluid, with
several proposed but few officially defined and approved standards.

This resulted in a pool of solutions, and specifications which define various
transaction management systems each with their own standards and models,
applicable in different scenarios. These solutions can be classified into three
main categories:

• SOAP/XML Web Service based transaction frameworks.

Projects under this category include the various efforts made by IBM,
Microsoft, BEA and Arjuna technologies amongst others in the Web
Services Composite Application Framework (WS-CAF) and WS-C/T
Projects, which are basically identical to each other however the first
being oriented towards open source technologies and the latter being
privately administered. The main architecture of these projects is that

A Meta Model For Long Lived Transactions

 Page 38 of 175

of providing orchestration and choreography technologies to
transactional objects in a distributed environment through Soap/XML
messages. WS-CAF is divided into three main layers, each of which
progressively supports distributed long lived transaction management:

WS-CTX: This is the initial lightweight framework which

supports simple transactions.

WS-CF: Handles message passing and transaction context

management.

WS-TXM: Comprises a full scale framework supporting three

main transaction models, (two phase commit, long
running actions, and transaction workflows). Over
distributed transaction coordinator entities.

 They are typically used in conjunction with workflow control
languages such as BPEL or WSCl.

• Solutions based on the Object Management Group’s OTS Specification.

OMG.org’s OTS specification extends the specification of CORBA in
order to support transactions across multiple objects. One particular
framework specification which falls under this category is Sun’s JSR 95
Activity Service Specification Project. This specification aims at
providing an extension of Sun’s currently available Java Transaction
Service/API, in order to make it support long running transactions. It
introduces various concepts, such as the idea of having a framework
into which various transaction models may be plugged, having
transactional or non transactional batches of work forming a
compound transaction (Units of Work), the concept of a High Level
Service, and various other concepts. The main advantage of this
framework is that it is highly flexible in terms of transaction models;
however it relies strictly on CORBA/IIOP communication.

• Script Based Transaction Workflow Representation Solutions

The two most prominent specifications here are Contract Model based
specifications, and variants which use control flow description
methods. One particularly robust specification which is classified as
such is the CovaTM control flow framework, funded by Bell
Laboratories, USA. This framework contains detailed specifications of
a script-like language which is used to control transaction workflow.
Various features are present in this framework, which make it a

A Meta Model For Long Lived Transactions

 Page 39 of 175

desirable one to use, ranging from adequate transaction context
handling, flexibility, and abstraction of transaction model details from
developers using the system. The main drawback of this solution is
the complexity of the scripting language.

Another solution which, while not script based, is also based on a fixed
sequential workflow is the implementation based on the JSR 95 LLT
model developed by Ixaris (Malta) Ltd. The engine developed caters
for Long Lived Transaction Handling (variant terminology for Long
Running Transaction), while offering several novel features such as the
suspension and resumption of a transaction. This includes persistence
of the transaction to disk, thus allowing restart of the middleware and
the server, without losing the transaction’s information.

While the solutions described above are the most widely known, various other
solutions are available, such as ebXML, BPEL4WS, etc. It is not possible to
cover all available solutions, however the three categories described above
include most features that typical transaction handling frameworks possess,
giving the reader an idea of the way a typical transaction management
system should operate, and an idea of the critical components which it should
contain.

The choice of a transaction management framework strictly depends on the
application which will be developed. Given the current solutions and
transaction models, the developer must analyze each possible scenario in the
system he is developing, and subsequently select the best fitting transaction
model. The developer may either opt to implement the model himself, or
choose a middleware software solution such as the ones described above,
which manages transactions for him.

2.3 Drawbacks of Current Solutions

During the literature review, a series of drawbacks present in current model
specifications and solutions can be identified. These include not only technical
and design issues or each individual model, but also abstract problems present in
the transaction management area as a whole. These include:

• Non Technical Issues

o Developer’s choice of an appropriate model and solution

A Meta Model For Long Lived Transactions

 Page 40 of 175

• Technical Issues

o Separation of Transaction Models from Management Systems
o No apparent Long Running Transaction Standards
o ACID principles in Long Running Transactions

2.3.1 Non Technical Issues

The problems presented in this section do not relate to the design, development
and deployment of a transaction model or transaction management solution, but
rather regards generic issues in the area of transaction management which
developers may encounter when creating a transaction enabled application.

2.3.1.1 Choosing a Solution

The most obvious problem which results from the research is the difficulty of
choice which a developer must face when selecting a way in which to
transaction-enable his application. As it has been seen in the literature review,
there is a wide range of varying solutions which cover various possibilities of a
solution, some of which overlap. Rather than having the advantage of being
spoilt for choice, developers thus encounter a problem, namely the dilemma of
which model best suits their application, and which solution should they chose.

In certain cases, there can also be a situation where no readily available model
fits the application needed by the developer, and thus a custom model must be
designed. Since no solution would exist which caters for the custom model, the
developer also has to go through the trouble of developing a transaction
management system for his custom model.

The situation as it is requires developers to have medium to expert knowledge in
the transaction management field, since this is needed both to choose an
appropriate readily implemented transaction model solution and to develop a
completely customized transaction model and management system. This is not
the ideal solution, since transaction modeling techniques, and transaction system
design and implementation are not a trivial task and require a great amount of
time consuming effort and resources which could be better invested for the top
level application’s main scope. If for example a developer wants to create an e-
Topup System, or a Travel Agent’s booking system, if no ready made template
system is suitable, he has to detour and developer a transaction management
system for the e-Topup or Travel agent, probably using more time in its

A Meta Model For Long Lived Transactions

 Page 41 of 175

development than in the development of the top level solution. Thus a solution
should ideally be found for this issue.

2.3.2 Technical Issues

The problems presented in this section regard the technical issues encountered
during the design and development of transaction models and solutions which
cater for long running transactions. Special importance is given to the problem
of the application of ACID principles to long running transaction models.

2.3.2.1 Separating Transaction Models from Transaction Management
Systems

An issue which is common to various solutions is the close coupling between a
particular transaction model and a transaction management solution. This is the
case of any Transaction Management System which is implemented with the sole
purpose of exploiting one particular transaction model in mind, as is the case of
CovaTM. In CovaTM, the transaction management system has been designed to
operate solely with its accompanying model, which is hard coded in it. The same
situation is present in the LLT solution proposed by Ixaris, where the runtime
engine was based was solely on the LLT model. The notion of hard coding a
model into an engine, and having the engine cater solely for that model reduces
the range of applications which may use that solution to those which perfectly fit
that particular model, thus possibly making the solution impractical. Ideally, a
transaction management system should not be bound to a particular model and
a model should ideally not be hard coded into the system but rather defined
separately from the software. This concept is examined in Sun’s Activity Service
Specification (JSR95) where a system with a pluggable model architecture is
proposed. This is a desirable feature in transaction management systems since it
enables them to operate using different transaction models, making them
suitable for a wider range of applications. Besides, if the concept takes off, a
standard method of defining methods may evolve, resulting in the possibility of
inter sharing transaction models between transaction management systems. For
this to happen, a transaction model would ideally be defined in a physically
separate file from the system, possibly in a standardized format.

2.3.2.2 Standards in Long Running Transactions

While well known and officially approved standards exist for short lived
transactions, namely ACID principles, the relaxation of these principles in the
case of long running transactions has caused various research efforts from

A Meta Model For Long Lived Transactions

 Page 42 of 175

individuals and major software houses, resulting in each of these entities defining
their own standards, principles and methods, and using them to cater for long
running transactions. Thus while previously a globally approved set of principles
(ACID) was available for anyone dealing with transactions, we now have a large
pool of ways in which long running transactions may be handled, none of which
is approved by a centralized authority. This does not necessarily mean that the
methods are ineffective, however as previously explained, havoc is caused when
a developer comes to choose a method for his application, probably resulting in
him implementing his own custom solution. Ideally, a standardized way is
defined to at least allow a way in which transaction models may be defined
across all existing systems.

2.3.2.3 ACID Principles in Long Running Transactions

The most important technical problem which must be considered is the fact that
while ACID principles work well in short lived transaction models such as two
phase commit, in the case of long running transactions, they do not seem to fit.
This is mainly due to the major change in logic from the concept of one atomic
transaction which commits or aborts, to that of a compound transaction made up
from various sub transactions, each of which may be atomic, or consist of
compound transactions. This change in logic, coupled with the introduction of
rollback and recovery concepts, give clear indications that ACID principles, while
still partly valid, are not completely applicable to models which cater for long
lived transactions. Thus the main problem presented here is the fact that ACID
principles are not always adequate for long lived transactions. Thus the
following questions arise:

• Is ACID good or not?

• How should this problem tackled?
• What is the solution to this problem?

The best method to resolve these queries is by looking at real life scenarios
which have transaction processing potential and analyzing them, taking into
account whether the ACID model based solution would be efficient in each
scenario. There is an infinite amount of possible scenarios to which transactions
can be applied, ranging from purely atomic transaction services to highly
complex compound long running transactions, however for this particular case,
two scenarios will be considered, a account e-Topup facility, and a typical travel
agent scenario. A brief overview of each scenario, together with an analysis of
the choice of a model and management system for each scenario is provided on
the next page:

A Meta Model For Long Lived Transactions

 Page 43 of 175

2.4 Real Life Scenarios

Below is a brief description of the logical mode of operation of each scenario
from a high level perspective, followed by a generic confrontation of the case
studies with acid model implementation scenarios:

2.4.1 E-Top Up Facility

Consider a software application which requires topping up of an account, such as
a pre-paid mobile web-top up, or a Voice over IP phone software such as Skype.
The main requirement of this application is that members who purchase the
software are allowed to top up their Skype accounts through the software, using
third party financial services such as Visa, MasterCard, PayPal, or Entropay.

When a user tops up his account, a skype topup transaction is executed. This
transaction consists of three main processes:

• Checking if topup is allowed with a remote skype server

• Making a fund transfer request to a third party server such as VISA.

• Updating the user’s account information on the remote skype server

The task of the developer in this case is to develop the voice over IP phone
application, including this top up process. The way in which the processes are
coordinated will be determined by the transaction model which the developer
chooses to implement, or by the middleware solution which the user decides to
exploit.

2.4.2 The Travel Agent Facility (Referenced from JSR 95)

Consider a typical travel agent, where various services which enable customers
to plan their holidays are offered. In this case study, the travel agent facility
considered here also presents a rather complex system, since it comprises of a
multitude of these services which may have various interdependencies on each
other when reservations are made. These include:

• A flight ticket booking service

• A hotel room booking service
• A train ticket booking service

A Meta Model For Long Lived Transactions

 Page 44 of 175

The main idea here is that an end user selects a series of parameters through a
GUI, which determine the services he wants for his or her holiday, and initiates a
“Book Holiday” transaction. This transaction executes all the processes needed
in order to book any service requested by the client for his holiday. It is being
assumed that parallel transactions are possible, as in, if a client requires a
compound transaction which comprises of a flight reservation and a train
reservation, these both are two isolated transactions with their own resources,
and thus they can be carried out in parallel without hindering each other’s end
results.

However, the results of each Unit of Work of the transaction do have to depend
on each other. For example, if a client requests a flight and train reservation for
a particular date, it may occur that the train booking is successful, while the
flight booking fails, thus making the flight booking of course useless. For this
case study, this situation is also catered for according to the choice of the
transaction model or management system which the developer carries out.

2.4.3 Case Study Analysis – Interdependencies & Workflow

The first step in the determination of which transaction model or solution to
select is that of defining the workflow which takes takes place in the application
in question. In the Skype E-Topup scenario, a logical sequential execution can
be identified:

Figure 2.4.3.1 Skype E-Topup System

Initially the system must check if topup is allowed, then make a fund transfer
request, and finally, if the transfer succeeds, the user’s account is updated.

It can be noticed straight away, that a strict ACID based model such as two
phase commit would not be adequate in this case, due to the compound nature
of the topup transaction. This particular workflow does not require parallel
execution, thus one may also rule out the choice of any transaction models or
solution based on parallel execution such as the Split Join Model. Since this

A Meta Model For Long Lived Transactions

 Page 45 of 175

application will always consists of the same workflow, with no possible variants,
a transaction model such as the nested model may be applied. However,
consider again two phase commit. What if a hybrid model is created, where
each activity executes in an ACID environment, returning a “commit” or “abort”
state? The long running transaction’s result would thus depend on a series of
two phase commit based activities. This, in essence is similar to the LLT model,
or rather, a hyrid model which extends the two phase commit. It can be seen
that while the user is, as previously stated “spoilt for choice”, the element of
confusion can still arise, on whether ACID is good or not, and which model and
transaction management solution would best suit the application.

In the travel agent’s case, the definition the workflow is different. Activities may
be defined as “a set of one or more Units of Work both short and long lived,
transactional or non transactional, possibly running in parallel, which together
make up one compound long running transaction”. The next diagram provides a
graphical representation of a typical activity which could occur in this context:

Figure 2.4.3.2 Flight Booking System (Ref JSR95)

In this scenario the process consists of parallel running transactions, where each
atomic transaction has an impact on any other transaction running in parallel to
it, thus full rollback and recovery capabilities are a must. Since the classic
nested transaction consists of the parallel execution of all its sub activities, it may
be considered as the ideal way to go in this case. However, since each activity in
the nested model must wait for each of its children to commit, before it actually
commits, in this case, the result of applying the nested transaction model would
be that of having several resources waiting for each other over an extended
period of time, which is unacceptable in the case of an airline, train company, or
hotel. As opposed to the E-Topup example, in this case the workflow may vary
according the parameters set by the end users, thus a solution which handles
multiple workflows would be ideal. This eliminates all transaction models and
management systems which are tightly bound to one particular model which
defines strictly one workflow, leaving us with choices of script based models such
as conTract and Cova TM. When considering two phase commit, it can be seen

A Meta Model For Long Lived Transactions

 Page 46 of 175

that this ACID based solution definitely cannot handle such a transaction in its
classic form, without any modification. This also rules two phase commit out.

However at this point, the general idea that ACID is not good, but still should not
be completely scrapped may be visualized.

2.4.4 ACID is good – take it in short doses!

Transaction management systems which are based on strict ACID principles
blindly follow the rules of atomicity, consistency, isolation and durability.
However when looking at these scenarios, it is noticed that in both cases it is
impossible to strictly follow all four ACID properties at all times. This is mainly
due to the fact that a transaction is not seen as an atomic element, but as a
compound element (previously described change in logic). This implies that a
transaction is made from a series of sub transactions, which may also be of type
long running, thus containing further sub transactions. However if one iterates
throughout all the hierarchy of transactions and reaches the activities with the
lowest level of granularity, the activities found at this level may be considered as
atomic, isolated, and durable. This rule is consistent in any possible transaction
management scenario.

This means that rather than scrapping ACID concepts, they can possibly be used
as the base rules for handling activities which represent the lowest granularity
level. The result is a hybrid model which includes a series of activities as its
foundations which “more or less” conform to ACID principles, and coordinates
them by encapsulating them in higher level long running activities and
transactions. If one applies the nested model to the Skype E-Topup scenario, the
long running transaction “Topup” would still consist of the three same activities,
which however are now considered as atomic, durable, and isolated transactions.
Technically speaking, the activities would still not be completely ACID
conformant, since the consistency property is partly lost with the introduction of
rollback and recovery concepts; however they can still be considered very similar
to classic ACID based transactions. Mark Little identifies this event as “relaxation
of ACID rules” in his article “ACID is good, take it in short doses”. [5]

This leads us to the conclusion that ACID principles are inadequate if viewed
from the classic perspective of having a strict ACID based model handling a
whole transaction, from beginning to end. However if a new perspective is
taken, where ACID principles are used as the foundations for an extended model,
ACID still works effectively. The great thing about this novel concept is that it
can be applied to any existing transaction model, thus not requiring the further
introduction of new transaction models. The only change needed is in the way
of defining the transaction hierarchy, by considering the lowest level as a

A Meta Model For Long Lived Transactions

 Page 47 of 175

transaction which is loosely based on a relaxed form of ACID principles. An
example of a transaction model which readily exploits these concepts is that of
the SAGA transaction model.

SAGA’s notion is that of loosening the rigidity of strict ACID properties, however
not completely scrapping them. In fact a typical SAGA:

“approximates atomicity over a long period of time, however not providing

the isolation property”. (Acid is good, take it in short doses – Mark Little) [5]

This is done by breaking down the whole activity of a scenario into sub-activities,
and further into transactional or non transactional Units of Work or activities,
which are loosely based on ACID principles. Taking the travel agent’s scenario
into consideration, if it has to be modeled around a SAGA based model, each
Unit of Work (ellipse in the diagram above) would be an atomic transaction:

Transaction Method Type

Book_flight();
Book_hotel();

ACID based Transaction
ACID based Transaction

/*At this point the flight fails but hotel
succeeds*/

Rollback_Flight();
Compensate_Flight();

/*If same date flight is found*/
Ready();

/*Else different date*/
Rollback_Hotel();
Compensate_Hotel();

ACID based Transaction
ACID based Transaction

ACID based Transaction
ACID based Transaction

Figure 2.4.4.1 SAGA Transaction Model Descriptor

Thus in SAGA terms, the above table would be one long running activity,
consisting of non isolated loosely coupled atomic transactions. Thus the saga
model gives proof that ACID principles in long running transaction models are
still applicable, however in a more relaxed manner than the way they are applied
in short running transactions. While this analysis solves the dilemmas presented
about the adequacy of ACID principles for long lived transactions, it still does not
address the rest of the drawbacks discussed in section 2.3.

A Meta Model For Long Lived Transactions

 Page 48 of 175

2.5 The Problem

It can be concluded that while the advanced transaction models and frameworks
researched have been shown to cater in general for the resolution of the strict
ACID problems; a series of issue are still present, whose solution serves as the
main motivation for this thesis.

The largest problem which ties most classic advanced transaction models
together is their lack of flexibility when catering for varying applications. As
previously explained, the chances of having a wide range of applications
perfectly fit a predefined model are scarce, if not impossible. The solution to this
would mean restricting the ways in which developers can define transactions in
their applications, which is of course an undesirable feature in a transaction
model.

On the other hand, when one looks at the transaction framework specifications
available, namely OMG.org’s Object Transaction Service, upon which CORBA and
Java’s Activity Service Specification was modeled and Arjuna’s WS-CAF
Framework described in this chapter, the concept of long running transaction
handling has always been synonymous to complex, difficult to understand,
mainly container based specifications. Implementations based on these
specifications include Java’s Enterprise Beans, COM+, and Microsoft’s latest effort
in the area; the System.Transaction library. However;

“most of these standards employ simple, ad-hoc solutions without addressing key
issues of transactional components.” – Marek Prochazka (Jironde) [34]

Prochazka refers to the fact that even though various transaction framework
specifications are present, there is no complete solution, applicable in all cases of
long lived transactions which aids developers in handling long running
transactions in a simple but complete manner. While framework specifications
like IBM’s JSR95 do offer multi model coverage, they tend to require a high
degree of transaction modeling knowledge from the developer’s side in order to
be effective. These issues thus serve as motivation for this thesis, where an
alternative solution which resolves these issues will be sought.

A Meta Model For Long Lived Transactions

 Page 49 of 175

2.6 Motivation

From the research carried out it can be clearly seen that even though
there has been a massive effort in the issue of long lived transaction handling
since the early 1980’s, concrete solution attempts have never been fully
satisfactory. The main problem lies at the heart of the subject; the transaction
models. A vast amount of transaction models have been proposed since 1980,
varying from simple Atomic Transaction Handling Models to very complex
Compensation Based models, the problem being that its impossible to have one
transaction model which caters for all possible transactional scenarios. Each
proposed model fits an application, or a range of applications, and thus is most
effective when a developer uses it for the relevant range of applications. In
certain cases, an application may need a completely custom model, made from
Advanced Transaction Model Primitives, but not conforming completely to any of
them, nor to any of the true advanced transaction models currently available.
This would require the developer to conceptualize and implement a transaction
model for the application from scratch each time a different model variant is
needed, thus of course creates a problem, since it results in inefficiency in time
and resources.

The motivation of this Thesis is that of providing an intermediate solution

to the issues mentioned in the previous section. This can be done with the
creation of a meta-model which allows the developer to either build a custom
model for a transactional application under development, or use a pre-
implemented template, in both cases abstracting him from the core implications
of transaction handling. This would make it possible for a developer to
implement the separate Units of Work in a conventional manner, without having
to cater for nesting, transaction dependencies, delegation, and all issues related
to transactions. The transactional behavior of each Unit of Work would then be
expressed separately, possibly with the help of a specialized descriptor or
scripting language. This solution in essence would be similar to the structure
presented in conTract models, however offering a framework, which houses
similar concepts to the ACTA, and the Ixaris LLT frameworks. Such a meta-
model would allow developers to have no restrictions on the manner of operation
of the transactions required by the application under development; since a
possible open – source approach could possibly be taken to enhance
extensibility of the meta-model itself. Extensibility may also be applied to
transactional behavior, by converting the Unit of Work behavior script into an
extensible one. Further development may include a graphical application which
allows the developer to graphically represent Units of work, together with the
transactional behavior needed for the system in question, thus reducing the
learning curve for the developer.

A Meta Model For Long Lived Transactions

 Page 50 of 175

Chapter 3: Requirements & Specification

3.1 Introduction

This chapter will provide a specification of the main modules needed for a Meta-
Model based solution, as described in the previous chapter. The goal of this
chapter is a detailed specification of the components, enough to permit a solid
design, to the proposed solution.

3.2 General Overview

The idea is that of providing a solution which extends on the features provided
by traditional transaction models, eliminating their complexities and issues at the
same time. This leads us to the proposal of the Transit Model, an open source
academic project which defines a meta model for Long Lived Transaction
processing. Keeping in mind the theoretical information previously analyzed,
together with the existing models and solutions, we shall now draw a set of
requirements which would ideally be present and operational the in Transit Model
solution;

The main issues with current systems are the following:

• Use restricted to a narrow range of applications.

• Those which cater for a wide range of applications are very complex to
implement.

• Each solution/proposal has completely different designs, and thus
there is no way of having commonly defined standards.

• Developer must have extensive knowledge of Transaction Models.

• Very few systems are completely open source.

The target to achieve during the design phase of the Transit Model will be that of
conceiving a new way of handling Long Running Transactions which eliminates
these issues.

A Meta Model For Long Lived Transactions

 Page 51 of 175

3.3 Project Requirements

The main requirement of this project is that of creating a solution which allows
developers to easily create long lived transaction enabled applications, without
having the necessity to learn transaction modeling in depth. Thus, the solution
to this project should include a series of tools and structures which make rapid
development of transaction enabled applications possible. When analyzing the
research material, a set of critical features which would be desired in the ideal
Long Lived Transaction handling solution may be identified. Besides the
resolution of the predefined issues in current systems, the Transit Model solution
should ideally include or be able to manifest the following features:

• Abstract Transactional details from developer

As previously mentioned, in most cases developers lack expert knowledge
about advanced transaction management, thus making transaction
enabled development a lengthier process. Ideally, the Transit solution
would encompass a complete package, which the user just adds to his
solution, taking care of any transactions which take place. This would
mean the total separation of transaction logic from top level application
logic, where the Transit Model Solution caters for all transaction
coordination and execution and the developer creates an application
without transactional implications.

• Model Plugin Concept

One feature found lacking in many existing solutions is the possibility of
changing the transaction model upon which a system executes. Current
systems are tightly bound to a particular model, and thus do not support
multiple models. This feature would is considered as one of the
foundations of the Transit model. It has been proposed in the JSR95
specification.

• Open Source Nature

One key feature of this project is that should have an open source nature.
The overall mind set which makes this project successful would be that of
providing an initial solution, hence the artifact accompanying this thesis,
and then posting it to the open source community for comments,
feedback, revisions, and suggestions.

A Meta Model For Long Lived Transactions

 Page 52 of 175

3.4 Transit Model Solution Specification

In this section a more detailed look at the solution and its components is
provided. When one takes into account the previous requirements, the initial
architecture of the system can be outlined. The various components are
identified and described in the following text.

3.4.1 Semantics

From a theoretical point of view, the Transit Model Solution will provide an
innovative solution for easy transaction enabled system development, which
handles long lived transactions, including concepts such as transaction commit,
abort, rollback techniques, and compensation techniques. The main theoretical
frame on which the Transit Model is based is the following: The Solution consists
of a scripting language which defines transaction context, into which Long Lived
Transactions are plugged, thus being executed according to the context. A Long
Lived Transaction may span over a substantial length of time, and consists of sub
modules called activities. Activities, which may synonymously be identified as
Units of work, represent the lowest possible component in transaction modeling
granularity, possibly consisting of a basic workflow, or atomic transaction.
Success of a transaction is greatly determined by the custom model used, and
cannot be rigidly defined. With the Transit Meta-Model, it is possible to define
classic models such as SAGA or NESTED models, or completely custom models.

3.4.2 Identification of Project Modules

The main components for the Transit Model Solution in order to comply with the
mentioned requirements can be identified in diagram 3.4.2.1. These include:

• The scripting Language, which is the actual meta-model
implementation;

• The transaction manager presented as an API, which includes a
runtime engine;

• The LLT, which represents a long lived transaction implemented by the
developer, consisting of a set of activities, and;

A Meta Model For Long Lived Transactions

 Page 53 of 175

• The Activities, which may be defined as a transaction workflow which
may or may not be atomic;

 Essentially, the actual LLT and activities are not part of the Transit solution, but
rather an implementation of the developer, which extends from an interface,
present in the Transit Model API. Consider the following use case diagram:

Figure 3.4.2.1 Use Case Diagram – Transit Model Solution Integrated Example

This use case diagram illustrates a typical case in which the developer makes use
of the Transit Model Solution to create a Long Lived Transaction enabled holiday
planning application. There are a series of simple steps which the actor has to
follow before actually designing and implementing the holiday planner system, in
order to make it transaction enabled. These include:

• Creating or obtaining a Transit Script which defines a transaction model

• Plugging the Script/Model into the Transaction Manager (Transit API)

• Adding the Transit API to the Holiday Planning development project

• Creating a series of Activities (BookPlane, BookTrain, Book Hotel)

A Meta Model For Long Lived Transactions

 Page 54 of 175

• Create an LLT from these Activities (BookHoliday)

Once these steps have been carried out, development of the holiday planner
application may continue normally, quite as if no transactions were being
handled. This architecture fulfills the most important requirement of the Transit
Model Solution, that is, the promotion of simplicity for the developer.

3.4.3 Transit Scripting Language Specification

The Transit script presented in the use case diagram, defines a custom or
standard transaction model, either defined by the user, or downloaded as a
template from a separate source. The script itself is not part of the transit model
solution, but rather a product of it. The transit model solution thus has to
include the definition of the scripting language, used to define the models. This
scripting language should have the following properties:

• Definition of a complete transaction context

The main scope of the scripting language is that of defining a transaction
context in which, a long lived transaction may execute. This includes, an
actual transaction model, and transaction inter dependency definitions, as
in, which activity executes before which, what happens if an activity fails,
etc. The most relevant pieces of information researched in this case
include the indirectly related Web services orchestration techniques, and
CovaTM’s definition of transaction context, a project by Bell Research
Labs. (CovaTM a transaction model for cooperative Transactions)

• An easily learnable yet complete syntax.

Since one of the main requirements is that of simplifying transaction
enabled development, a complex language definition would kill the
purpose of this project, thus, the choice of XML based syntax has been
made. XML is a standard language, well known, and easy to use if not
known. The true power of XML lies in its simplicity, extensibility, but yet
full functionality.

• The Scripting Language should be easily extensible

This is especially important since the project is oriented towards an open
source environment. This problem is again addressed through the use of
XML. Using XML, one can define virtually any language construct,

A Meta Model For Long Lived Transactions

 Page 55 of 175

exploiting already existing technologies such as XPath, Node Traversing,
and Schema Validation to parse it in a much simpler and quicker manner
than fully custom language syntax.

3.4.4 Transit Model API

The Transit Model solution must also include a transaction manager which runs
models defined with the transit scripting language. This engine thus enables the
combination of a long lived transaction defined by a developer in a top level
application such as the example Holiday Planner into the context defined by the
Transit Script. The combined product is then executed using a simple interpreter
in the API. The main features that the Transaction Manager should include are
defined below:

• Activity/LLT Descriptor Interfaces

This is the first section which is to be included in TManager. It should
provide an interface for developers in order to create standard Activities
and Long Lived Transactions, which can be successfully interpreted by the
core engine of TManager.

• Transaction Workflow Interpreter

This would include a simple parser, and interpreter, which translates the
XML syntax of the code into Visual C#.NET code, and caters for the
process of fusing the Long Lived Transaction forwarded by the developer
to the transaction model, defined using the Transit Script. The interpreter
should thus cater for the execution of the resulting workflow, resulting in
the commission or abortion of the Transaction.

• State Capture Structures (Suspend / Resume)

The transaction Manager should also cater for having a system of keeping
the current execution state, in order to make it possible to freeze
execution flow, persist it to disk, and load it and resume it at a later time,
possibly after a system restart. A possible GUI may be introduced in order
to assist the suspend/Resume Process.

A Meta Model For Long Lived Transactions

 Page 56 of 175

• Easy Integration

In order to allow easy integration of the Transit Model technology into
other projects, it would be best to develop the Transaction Manager as an
API.

The Transit Model API should also include a set of abstract or interface classes
which allow developers to create a standardized form of activity, and long lived
transaction, thus allowing the transaction context interpreter to easily run and
monitor the execution progress of a long lived transaction.

At this point, the Transit Solution can be seen as a series of structures and tools
categorized into two main modules;

The Scripting Language, which provides transaction context definition, and;

The Transaction manager, which provides an interface with which LLT's can be
cast into multiple contexts and executed, suspended or resumed.

A Meta Model For Long Lived Transactions

 Page 57 of 175

Chapter 4: Architectural Concepts

4.1 Introduction

This chapter will provide introduction to the solution’s architecture, serving as
basis for a detailed design of the Transit Model Solution. We will start where the
specifications phase left, and provide enough detail to allow the actual systems
design to be carried out. While no particular design methodology has been
adopted, UML has been selected as the primary too to illustrate the system’s
design.

4.2 General Architecture

Let us reconsider the requirements for the Transit Model Solution. The main
idea is that of defining a Transaction Model using Scripting Language constructs
similar to the idea of the ConTract Model, however at the same time allowing
developers to define the context of a particular scenario through the use of a
standardized structure of Activities and Long Lived Transactions based on the
JSR95 LLT Model. This structure is provided as an abstract class in the Transit
Model API, and plugged into the model and executed through a specialized
transaction manager which is also contained in the Transit Model API:

Figure 4.2.1 General Architecture

A Meta Model For Long Lived Transactions

 Page 58 of 175

4.3 Architectural Concepts

Let us now reconsider the building blocks which make up a transaction model
discussed in section 2.1.5, and apply them for the Transit Model Solution. The
properties discussed are:

• Transaction Modularization
• Activity and LLT State Handling

• Transaction Context Definition and Propagation

• Transaction Inter Dependencies

4.3.1 Transaction Modularization

The first thing which must be carried out in the Transit Model Solution design is
that of assigning a proper structural hierarchy to the concept of transactions. In
the case of the Transit Model Solution, the best structural hierarchy deemed fit is
one similar to that used in the Long Lived Transactions Model by JSR 95/Ixaris
and also in the SAGA model, that is, the notion of having a long lived transaction
being represented by sub activities as a top level, and transactions loosely based
on ACID principles at the lowest level of granularity;

• Long Lived Transactions (LLT’s)

As in any transaction model, the Long Lived Transaction in the Transit
Model Solution will represent the highest level activity, which has a
compound nature and may extend over a long period of time to complete.
A transit long lived transaction can also be made up of several sub
activities, themselves being long lived or atomic transactions, loosely
based on ACID principles.

• Activities (Units of work)

As previously explained, activities are the base component of a Long Lived
transaction, and in the Transit Model Solution’s case will consist of a class
containing a series of methods and data structures which represent the
activity. Remote connections to third party entities are very likely to be
established in an activity. The main idea is that the Transit Model Solution
provides a base class from which the developer extends, and develops his
own custom activities. While there is no restriction on whether an activity
should be restricted to being atomic or not, it would be good practice to
keep the granularity of an activity as low as possible, that is, it would be

A Meta Model For Long Lived Transactions

 Page 59 of 175

better for a developer to organize the activities according to the
transactional contexts they require, where activities with the same context
are possibly grouped or merged. While this feature increases robustness
in the solution, it is not controlled directly by the Transit Model Solution,
and is purely a responsibility of the developer who is using the Transit
Model Solution in his projects. This is due to the fact that while a base
class for activities and LLT’s will be included in the solution, the actual
context definition and remote query handling must be carried out by the
developer himself in a custom class, which extends from the Transit
Activity descriptor Abstract Class.

4.3.2 Activity/LLT Transaction States

While it has been agreed that activities consist of a transactional workflow which
will be defined by top level developers, it would be very difficult for the
Transaction Manager engine to later interpret the outcome of the code
execution, if some form of standard state handling is not introduced. For this
reason, in the case of the Transit Model, the following Transaction Structure
considerations have been assumed:

• An LLT may have two outcomes, commit, or abort, where commit
indicates success, and abort indicates failure.

• An activity may have five main outcomes:

o Idle - The starting state

o Completed - Activity ready but result not confirmed

o Committed - Activity ready and result confirmed

o Rolled Back - Activity failed and result rolled back

o Compensated - Activity had committed, but needs to rollback

The interdependencies between these states are depicted in the following state
transition diagram:

A Meta Model For Long Lived Transactions

 Page 60 of 175

Figure 4.3.2.1 State Transition Diagram

While the “completed” and “committed” states indicate positive outcomes, the
“rolled back” and “compensated” states indicate negative stances in the
execution process. When an activity executes, and reaches the completed state,
it has not yet committed the transaction, and can still roll back, however once
the activity reaches the committed state, it cannot move to the rollback state
again. Thus, reconsidering the travel agent, if a “BookPlane” activity is
committed, it can not roll back, but rather compensate. In a practical context
these states would represent the following example, for the BookPlane activity:

Idle Activity not Started

Completed Check if there is a free seat on a flight to Heathrow, next week

Rolled Back Clear any resources and send termination message to
Heathrow Server.

Committed Re-Check if seat is still free, and confirm it.

Compensated Try to cancel booking, if not permitted, find new customer for
committed ticket.

Figure 4.3.2.2 Activity States Example

4.3.3 Transaction Contexts – Definition & Propagation

As stated in section 2.1.5.4, transaction contexts represent a particular scenario
in which a Long Lived Transaction is executed. The definition of a context is
shared throughout all the activities participating in a long lived transaction, thus
having an impact on the interdependencies of these activities. A context is thus
one execution case of a long running transaction.

A Meta Model For Long Lived Transactions

 Page 61 of 175

In our case, defining a transaction context will be partly the task of the
transaction manager, and partly the task of the script. While the Transaction
Manger will cater for providing a form of standard Activity Abstract structure
from which developers extend, the Script and its Interpreter will cater for the
interpretation and execution of these activities which have been implemented by
the developer. Thus, while the transaction context is actually defined inside an
Activity, the scripting language will coordinate execution of that particular
transaction context. If one observes a typical activity from a holiday booking
application, contents similar to the following would be observed:

Begin

SQL Transaction BookPlane

SQL QUERY - Check Flight to Heathrow, Tuesday, 6 pm British Jet

IF Seat Found

SQL COMMIT BookPlane

Else
SQL ROLLBACK BookPlane

End

Figure 4.3.3.1 Activity Logic Pseudocode

The pseudocode above represents the transaction context definition inside an
activity identified as “BookPlane”, where a flight, with a particular destination,
thus a particular connection to a server, is being booked. This constitutes a
transaction context. Context Propagation on the other hand refers to sharing the
context with all the elements in a Long Lived Transaction execution process.
This will be catered for by the script, through the definition of transaction inter
dependencies.

4.3.4 Transaction Inter Dependencies

As stated in the literature review, the most common transaction primitives which
are used to define transaction models include the following:

• Nesting of Units of Work

• Sequential Execution

• Parallel Execution
• Recovery & Compensation Concepts

• Rollback Concepts

A Meta Model For Long Lived Transactions

 Page 62 of 175

These concepts are the purpose of the creation of the Transit Scripting
Language, which provides a series of language constructs and facilities, which
allow quick and easy modeling of these concepts, into workflows and models.

4.3.5 Transaction Workflow Generation

The script’s job is that of modeling a transaction workflow in a standard
language syntax which may be parsed and interpreted by the appropriate classes
present in the Transit Model API. The logic behind workflow generation through
the script is that of having a tree structure where each language construct
represents a physically defined node, and each node contains a flowlist of child
constructs. Thus the best way to represent each node would be through a
programmatic class, which contains an array list of child nodes. During
execution, the top level node is executed, thus triggering the sequential
execution of each of its child nodes. This process iterates till the bottom level
nodes, which contain actual commands instead of further children. Thus
commands are executed in a structured way. Further details are provided in
chapter six.

4.3.6 Suspend/Resume Enabled Pluggable Model Architecture

Let us now summarise all these concepts into one concise example which skims
over the general architecture. Consider our Travel Agent’s Scenario, which as
previously stated, will in this case be plugged into a nested transaction model.
The Transit model Components needed to carry this operation out include the
following:

• A nested Transaction Model Definition using the Transit Script.

• A Long Lived Transaction named “BookHoliday”

• A Series of Activities named “BookHotel”, “BookTrain”, “BookPlane”.

• The Transaction Manager API

The nested model defines void placeholders into which activities may be
plugged:

A Meta Model For Long Lived Transactions

 Page 63 of 175

Figure 4.3.6.1 FlowChart : The Nested Model

This flowchart diagram is actually the conceptual design workflow which the
Transit Scripting Language must be able to express. Besides creating or
obtaining the Nested Model Script, the developer must also create a list of
standardized activities, by actually using interface classes present in the
Transaction Manager API, store them in an array list structure, and cast them
into an LLT, which will also have an interface class defined in the Transaction
Manager. This LLT is passed onto the Transit Manager, which caters for
plugging the LLT into the script, thus generating a context, and then and
executing it. The Transit Manager will also cater for suspend, resume
capabilities, however more details about this architecture is given in the separate
design sections.

4.4 Transaction Handling

Being able to handle multiple models, the Transit Model Solution does not
implement a completely stand alone transaction handling mechanism. The
Solution will offer a series of method calls which cater for the coordination of
transaction committing, rolling back and compensation, however it will be at the
discretion of the developer when to call these methods to construct the
transaction context. The way in which the developer calls these methods should
be in sync with the transaction model used in the application under development.
While this architecture requires that the developer must have basic knowledge of
what transaction commit, rollback and compensation are, it ensures the
applicability of multiple transaction models.

A Meta Model For Long Lived Transactions

 Page 64 of 175

Contexts for this project have been assumed to only contain a set of transaction
states. While the Transit Model Solution will only cater for context from a
transaction state switching point of view, full context propagation and handling
may be achieved through a third party component such as Microsoft’s
System.Transaction library, or, in case of a Java implementation, Java’s JTA
service. These two services offer various transaction handling services, including
full transaction context management, amongst others. Alternatively the
developer may decide to use any other tool, if needed, however the use of these
tools is preferred, since it would not make sense to re-code already existing
standard tools which have been proved to be robust. Consider the travel
agent’s scenario previously illustrated; the pseudocode in figure 4.3.3.1 can be a
JTA or System.Transaction Object, if deemed necessary by the developer.

A Meta Model For Long Lived Transactions

 Page 65 of 175

Chapter 5: The Transit Scripting Language

5.1 Introduction

This chapter provides the Transit Scripting language specification, structure, and
syntax keywords, which constitutes the Transit Meta Model. Examples of
transaction models defined using this meta model are also presented in the last
section.

5.2 Script Structure Considerations

In order to fulfill all the preliminary and architectural requirements, various
scripting language structures have been proposed, scrapped, and redesigned
from scratch. However the finally evolved and resulted in an XML based
scripting language, with specially designed syntax.

5.3 Language Structure

The nature of the Transit Scripting language is that of an XML based classic
imperative procedural language, whose sole aim is that of permitting the
definition of transaction model templates, which will then be used in the Transit
Transaction Manager. The aim is that of having a language which defines a
generic workflow, possibly using expressions with “n” variables, thus making
them usable for multiple applications. The language possesses the following
features:

• Classic Imperative language constructs (For Do, If Then, etc)

A detailed definition and application of each construct is available in the
following “Script Constructs” section.

• XML based language syntax

As previously explained, there are various advantages in the choice of
having XML as the foundation syntax of the language. Constructs such as

A Meta Model For Long Lived Transactions

 Page 66 of 175

elements and attributes suit perfectly for the creation of the Transit
language constructs, while the strict hierarchical and modular structure of
schema validated XML files proves ideal for reducing the chances of
having a buggy transaction model created by a developer. Finally
Techniques such as schema validation, node traversing, XPath, etc are all
aids for the parsing and analysis process. Thus, a typical syntax of the
Transit Scripting language would look similar to the following:

<model>
 <name>A Model Template</name>

 <decl>
 <activityList size = "*n*">
 arrayOfActivities
 </activityList>
 </decl>

 <workflow>
 …
 </workflow>

 <main>
 …
 </main>
</model>

Figure 5.3.1 Transit Script Template Preview

Where every open tag has a closing tag, and a well defined nesting can be
seen. Each and every model defined with the Transit Script should have
the four top level tags defined in 5.3.1; name, global declaration,
which holds the a generic mapping of an n sized array of activities,
workflow tag, which contains the actual model, and main tag, which
sets the initial segment to be called in the workflow.

• Named Methods

As in any procedural language, the notion of methods, or segments, has
also been introduced into the transit scripting language, thus allowing
more complex transaction workflows to be defined. These methods also
include the ability to pass parameters by value, thus enabling easier
transaction propagation.

• Variable Declaration and Parameter Passing Constructs

While parameter passing by value has been engineered mainly for
enabling parameter passing from one segment to the other, the Transit

A Meta Model For Long Lived Transactions

 Page 67 of 175

Solution also includes structures for both global and local variable
declaration handling. While the language handles the syntax aspect of
these constructs, the back end parser and interpreter engine include state
handling structures which enable parameters and declarations to be
evaluated and passed. More details about these structures is provided in
the “TManager Design” section.

• Generic “n” expression handling

This is one of the most important features included in the Transit Model
Solution, since it allows the definition of generic n based models, which
are suitable for Long Lived Transactions of different sizes. Using n based
expressions, the following logic (defined in pseudocode) may be used to
define a transaction model;

Let a Long Lived Transaction X have size *n*;

For increment counter c = 1 to *n*, execute each activity till the complete state.

If counter isequalto *n* then

For decrement counter c = *n* to 1, execute each activity till the commit state.

Figure 5.3.2 “N” Based Expression Example

This is the pseudocode of a basic nested model, which still doesn’t cater
for transaction failure, similar to the one defined in the previous flowchart,
however its main scope is demonstrating that such a model would cater
for Long Lived Transactions of any size, ranging from one to *n*. This
eliminates one of the crucial problems in traditional transaction modeling
techniques.

• The ability to define custom constructs through XML

Transit’s design based on XML syntax, coupled with the previously defined
segmentation technique allows developers to create custom language
constructs, embed them in segments, and simply call them whenever
needed. These segments may also be saved as templates and used
across various models. While the hard coded language syntax consists of
classic imperative language constructs, these provide all the functionality
needed to model any possible workflow, and subsequently create any
construct. Taking a practical example, let’s say that a developer wishes to

A Meta Model For Long Lived Transactions

 Page 68 of 175

create a try catch statement; the following pseudo code defines how
Transit Script may be used to define a try catch statement:

<segment name = “Try”>

For increment counter c = 1 to *n*, execute each activity till the complete state.

If after each loop, Activity[c] has state rolled back, go to the catch segment and
break the loop.

</segment>
<segment id = “Catch”>

For decrement counter c2 = c (passed from try), execute each activity’s rollback
statement.

</segment>

Figure 5.3.3 Custom XML Based Constructs

• Parallel Versus Sequential Execution

The idea of parallel execution, has been considered several times during
the Architectural design of the Transit Model, however while still being
considered as a desirable asset, it has been marked off as future work
material, mainly due to the fact that parallel execution introduces
complexities which make suspension & resumption of transactions
practically unstable even if still semantically possible. Thus preference
was given to the suspend/resume facility over parallel execution.
Sequential language constructs are still able to model any type of
transaction model in the market at present date, since none of these uses
direct parallel execution.

5.4 Script Constructs

The list on the next page includes a full definition of the transit scripting
language syntax, together with a case example for each construct. These
constructs define the language which fulfills all the requirements discussed until
now.

A Meta Model For Long Lived Transactions

 Page 69 of 175

5.4.1 Script Constructs: The Model Tag

Syntax <model></model>

Definition

This section introduces the basic script template upon which every
model should be built. As previously stated, a script should contain
a model XML tag, into which a name tag, a global declaration tag,
a workflow tag, and a main tag are embedded. These tags are
tackled and explained individually in the following text.

Rules

• The script must always be embedded in a <model> tag.

• One <name> tag containing the script’s name should
always be present as a first child node to the model tag.

• One global declaration tag should always be included, and it
should always contain one <activityList> tag which has a
size XML attribute, amongst other tags of other types, if
necessary.

• One <workflow> tag should always be present in the script,
positioned after the <name> and <declaration> tags,
containing the actual script workflow.

• One <main> tag should always be present as the last child

node of the <model> tag.

• Uppercase or lowercase format may be used for tag
definitions, there is no difference in operation since the
engine will convert all the tags to lowercase during the
parsing process. However parameters, and variable
declarations are case sensitive, thus attention should be
paid when assigning them.

• Standard XML format rules apply (see www.w3schools.com
for details), and are enforced by the system. XML script
files which are non conformant to W3C rules will not be
processed by a Transit based Transaction processing
system.

A Meta Model For Long Lived Transactions

 Page 70 of 175

5.4.2 Script Constructs: Name Tag

Syntax <name>Alpha Numeric Value</name>

Definition

The name tag simply serves as a data holder for the current name
of the Transaction Model which is being defined in the script in
question.

Rules

• A script should have one instance of the <name> tag. It
should be included as the first child node inside a <model>
tag.

• The name tag has no XML attributes, and takes an

alphanumeric inner text value, which represents the Model’s
Name.

Sample
Script

<?xml version="1.0" encoding="utf-8" ?>

Sample
Script

<?xml version="1.0" encoding="utf-8" ?>

<model>
 <name><!-- Put Model Name Here --></name>

 <decl>
 <activityList size = "*n*">
 <!--arrayOfActivities -->
 </activityList>
 </decl>

 <workflow>
 …
 …
 <!--Actual Workflow, segments &
 imperative language constructs. -->
 …
 …
 </workflow>

 <main>
 <!--A goto statement indicating which
 segment to execute first.-->
 </main>

</model>

A Meta Model For Long Lived Transactions

 Page 71 of 175

<model>
 <name><!--Put Model Name Here --></name>

 …

5.4.3 Script Constructs: Global/Local Declaration Tag

Syntax <decl>…</decl>

Definition

The <decl> tag’s main purpose is that of providing an indicator for
a global or local variable declaration present in the script.

Rules

• A script should always have one instance of the <decl> tag
included as the second child node inside a <model> tag,
right after the <name> tag. This should include an
<activityList> tag, amongst other global declarations of
type <counter>.

• Local declarations can also be present in script segments.
These are also constituted by a <decl> tag, present in a
segment tag, before the actual workflow code. A local
<decl> tag possesses no attributes, and can have one or
more children of type <counter>.

Sample
Script

<model>
 <name><!--Put Model Name Here --></name>

 <decl>
 <activityList size = "*n*">
 arrayOfActivities
 </activityList>
 …
 <!--Variables of type <counter> -->
 …
 </decl>
 …

5.4.4 Script Constructs: ActivityList Tag

Syntax <activityList>Name of LLT</activityList>

Definition

The activityList tag has the sole purpose of defining an abstract
list of activities, which will be used in order to create the model.

A Meta Model For Long Lived Transactions

 Page 72 of 175

The activityList tag contains an XML attribute, named “size” which
defines the size of the list. In essence the activityList has
properties of an ArrayList where each position in the list signifies
an activity.

Rules

• An <activityList> tag, should always be declared globally in
a script definition. Only one instance if this tag is allowed
per script.

• The size attribute of this tag may be alphanumeric, since

the value can either be definite, as in integer values, or
indefinite, as in *n*, where *n* refers to the size of the list.

Sample
Script

<model>
 <name><!--Put Model Name Here --></name>

 <decl>
 <activityList size = "*n*">
 arrayOfActivities
 </activityList>
 …
 <!--Variables of type <counter> -->
 …
 </decl>
 …

5.4.5 Script Constructs: Counter Tag

Syntax
<counter value = “V”>Name of Variable</activityList>

where V is a Natural Number

Definition

The counter tag is used in the <decl> tag in order to declare a
local or global variable of type Integer. The Inner Text of this tag
is considered to represent the variable name, while the value is
stored inside a value attribute.

Rules

• While any amount of declarations is allowed, a <counter>
tag may be used only inside a <decl> tag.

• The value attribute of this tag must always be of type
natural number, since the value can only be of definite

A Meta Model For Long Lived Transactions

 Page 73 of 175

type.

• Counter tags can be assigned a value externally by <goto>
statements. This is done if a <goto> statement has a
parameter attribute which has the same name as a local
variable in the segment it is calling. If this is the case, the
local variable, takes the parameter’s value.

Sample
Script

<?xml version="1.0" encoding="utf-8" ?>

<model>
 <name>Put Model Name Here</name>

 <decl>
 <activityList size = "*n*">
 arrayOfActivities
 </activityList>

 <counter value = "0">globalk</counter>
 </decl>

 <workflow>
 <segment id = “A Segment”>
 <decl>
 <counter value = "0">k</counter>
 </decl>
 …

5.4.6 Script Constructs: WorkFlow Tag

Syntax <workflow>…</workflow>

Definition

The scope of the workflow tag is that of containing the actual
workflow definition of the model, described using classic
imperative language constructs.

Rules

• Every script should contain one workflow tag, placed after

the global declarations. Workflow tags do not possess XML
attributes.

• The workflow tag must contain one or more child notes of
type <segment>.

Sample

 <workflow>

A Meta Model For Long Lived Transactions

 Page 74 of 175

Script <segment id = “A Segment”>
 <decl>
 <counter value = "0">k</counter>
 </decl>
 …

5.4.7 Script Constructs: Segment Tag

Syntax
<segment id = “X”>…</segment>

Where id is Alphanumeric

Definition

The segment tag is responsible for containing the core part of the
Transit Script, where the actual workflow resides. The segment
tag has an XML attribute named “id” whose value represents the
name of the segment. This name is used by <goto> statements
in order to call the segment.

Rules

• Segment tags should always be contained in a workflow
tag. Multiple segment tags are allowed, however each one
must have a unique value in the “id” attribute.

• Parameters may be passed to segments from <goto>

statements. This is done be declaring a local variable inside
the segment tag, which has the same name as a parameter
which is being passed. The TManager engine will then
automatically cater for value mapping. Please note that
recursion is not permitted in the Transit Script.

• The child structure of a segment should include, primarily

any variable declarations, and then a <begin> tag.

Sample
Script

 <workflow>
 <segment id = “A Segment”>
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 …
 </segment>

A Meta Model For Long Lived Transactions

 Page 75 of 175

5.4.8 Script Constructs: Begin Tag

Syntax <begin>…</begin>

Definition

The begin tag is the first tag which servers as an indicator point
for the parser that the actual workflow definition has begun. From
this point onwards, the script takes a more “Procedural 3rd
Generation Language” look.

Rules

• There are no strict rules for the content of the begin tag, as
long as it contains one of the following tags: <fordo>,
<ifthen>, <elseif>, <execute>, <goto>, or <cmd>.

• A begin tag should always be used inside a <segment>
tag, and should follow and <decl> tags which define local
variables. Only one begin tag is allowed per segment.

Sample
Script

 <workflow>
 <segment id = “A Segment”>
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 …
 …
 </begin>
 </segment>

5.4.9 Script Constructs: For Do Tag

Syntax

<fordo begin = “A” end = “B” counter = “C” step = “D”>…</fordo>

Where: A,B and C are *n* based expressions
Where D is either ++ or --

Definition

The <fordo> tag is similar to the for loop in the C# and Java
languages. It contains four attributes in all; the “begin” and “end”
attributes indicating the starting and ending value through which
to loop, the “counter” indicating the variable used to keep the
current value, and the “step” attribute indicating whether the loop
is ascending or descending step values.

A Meta Model For Long Lived Transactions

 Page 76 of 175

Rules

• The fordo must always be contained inside a begin
statement.

• Nesting is allowed, thus a <fordo> can contain another
<fordo>

• The begin and end attributes may contain variable names
which have been locally or globally declared instead of
literal values. These are then converted into a natural
number the parent segment is called through a <goto>
statement, which passes variable values.

• The counter attribute’s value must be alphanumeric, and

must match the name of a locally or globally declared
variable. This variable will hold the value of the current
loop count.

• The step attribute must always contain either ++ for step

up, or – for step down loops.

• A for do statement can contain the same tags as a <begin>
statement.

Sample
Script

<workflow>
 <segment id = "Start">
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 <fordo begin = "paramone"
 end = "paramtwo"
 counter = "k"
 step = "++">
 …
 …
 </fordo>
 …

5.4.10 Script Constructs: If Then and Else If Tags

Syntax

<ifthen type = “normal” index = “A” result = “B” >…</ifthen>

Where: A is an *n* based expression
Where B is “completed/committed/rolledback/compensated”

A Meta Model For Long Lived Transactions

 Page 77 of 175

OR

<ifthen type = "expression" expression1 = "A" operator = "B" expression2
= "C">

Where A and C are *n* based expressions including + or –

Where B is one of the operators (<, >, <=, >=, ==)

Definition

The <ifthen> tag is also similar to the if then else loop in the C#
and Java languages. However the use of if then statements in the
transit model is restricted to two types; those which check the
outcome of the execution of an activity, and those which evaluate
expressions, as seen in the syntax formats above. The “type”
attribute present in the tag has two values, “normal”, which
indicates that the statement is an expression outcome evaluator,
or “expression” which indicates that the statement is an
expression evaluator.

In the “normal” statement, the “index attribute indicates the
position of the Activity in the “activityList”, which is under
question, while the result indicates the expected outcome.

In the “expression” statement, the attributes “expression1” and
“expression2” may contain alphanumeric expressions with
operators + or -, while the operator attribute may contain a
selection of Boolean operators.

Rules

• The <ifthen> must always be contained inside a begin

statement.

• Nesting is allowed, thus an <ifthen> can contain another
<ifthen>

• The <ifthen> tag can contain any structure which the
<begin> tag or the <fordo> tags contain. (<fordo>,
<ifthen>, <elseif>, <cmd>, etc…)

• The index attribute in the normal <ifthen>, and the

expression attributes in the expression valuator <ifthen>
may contain *n* based expressions, or natural numbers.

• When an <ifthen> tag closes, it may be immediately
followed by an <elseif> tag, which possesses the same
attribute properties of the <ifthen> tag, or an <else> tag
with no statements, which simply executes the child notes

A Meta Model For Long Lived Transactions

 Page 78 of 175

inside if if the <ifthen> or <elseif> statements preceding it
fail.

Sample
Script

<workflow>
 <segment id = "Start">
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 <ifthen index = "k"
 result = "rolledback"
 type ="normal">
 …
 …
 </ifthen>
 <elseif type = “expression”
 expression1 = “k”
 operator = “<”
 expression2 = “*n*>
 …
 …
 </elseif>
 <else>
 …
 …
 </else>
 …
 </begin>
 …

5.4.11 Script Constructs: Execute Tag

Syntax

<execute position = “A” type = “B”>LLT Name</execute>

Where A is an *n* based expression
Where B is “complete/commit/rollback/compensate”

Definition

This construct is the most important construct in the script, since
it maps an activity from the LLT provided by the developer, and
executes it according to the parameters defined in this statement.
The execute statement has two attributes, the position, which
indicates the actual position of the activity to process in the
activityList, and the type, which defines till what level should the
execution proceed.

Rules

• Execute statements can only be used inside a begin tag,
inside a segment.

A Meta Model For Long Lived Transactions

 Page 79 of 175

• An Activity may be executed several times, progressively,
starting from type complete, and moving on to type
commit, to type compensate. The same state cannot be
executed twice, as this would cause not make sense in a
transactional context. The previously explained rules apply,
where if an activity commits, it cannot be rolled back, but
has to be compensated.

• The position of the activity to execute may be expressed
either by a natural number, or by an *n* based expression.

• An execute statement does not contain child notes, but its
inner Text represents the name of the activityList from
which Activities are being processed.

Sample
Script

 <begin>
 <execute position = "k" type = "commit">
 arrayOfActivities
 </execute>
 …
 …

5.4.12 Script Constructs: Goto Tag

Syntax

<goto paramone = "A" paramtwo = "B">Segment Name</goto>

Where A and B are *n* type expressions

Definition

The <goto> statement has the main task of issuing calls to
segments, either from the main program, or from within a
segment itself. Unlike the classic “goto” statement in assembly
language, this goto does not promote spaghetti code, since it can
only issue segment calls, similar to a method call in C# or Java.
The <goto> statement can have an indefinite number of
elements, which act as parameters in order to pass values to
global or local variables. The engine matches the name of the
attribute (for example: paramone), to a the name of a variable
inside a segment, or a global variable, and propagates the
parameter value to it. Thus parmeters may be passed between
segments through the <goto> statement.

A Meta Model For Long Lived Transactions

 Page 80 of 175

Rules

• The <goto> statement can only be used inside a <begin>
tag, where multiple instances are allowed, or inside the
<main> tag, where only one instance is allowed.

• The parameter names should match already existent
variables which have been globally or locally declared.

• The inner text of the command should match a segment

which is listed inside a <workflow> tag inside the same
script file.

Sample
Script

…
…
<ifthen index = "k" result = "rolledback" type ="normal">
 <goto paramone = "k-1" paramtwo = "0">CompensateAll</goto>
 <cmd>exitscript</cmd>
</ifthen>
…
…

5.4.13 Script Constructs: CMD Tag

Syntax <cmd>exitscript</cmd>

Definition

This is a simple command which is part of the workflow, and at
present contains only one command, which is the “exitscript”
command. As soon as this tag is found, its inner text is analysed,
and the corresponding command is executed. Plans to extend this
tag are classified as future work.

Rules

• <cmd> statements can only be used inside a begin tag,
inside a segment.

• Since at present, <cmd> has only the “exitscript”

command, it can be stated that <cmd> is solely used to
exit the script in case a transaction fails, however this may
be extended in future versions.

Sample
Script

…
…
<ifthen index = "k" result = "rolledback" type ="normal">
 <goto paramone = "k-1" paramtwo = "0">CompensateAll</goto>

A Meta Model For Long Lived Transactions

 Page 81 of 175

 <cmd>exitscript</cmd>
</ifthen>
…
…

5.4.14 Script Constructs: Main Tag

Syntax <main>…</main>

Definition

The main tag has the simple scope of containing one <goto>
statement, which indicates the first segment which must be called
upon initial execution.

Rules

• The <main> can only be used once in a script, and it
should be placed as the final child of the model tag, after
the <workflow> tag.

• The <main> tag is only allowed to have one child of type
<goto> which indicates the starting segment, and passes
initialization parameters.

Sample
Script

 <main>
 <goto paramone = "0" paramtwo = "*n*">Start</goto>
 </main>

5.5 Examples

Let us reconsider the previous flowchart, where a generic nested model was
described.

This model, as described before, may
now be translated into a Transit script,
which caters for all requirements, and
includes the “placeholders” for
activities to be plugged in. These are
the <execute> tags, which define
interdependencies, through execution
conditions, and *n* based expressions.
The resulting Transit XML based script
will look similar to the following
example:

A Meta Model For Long Lived Transactions

 Page 82 of 175

<?xml version="1.0" encoding="utf-8" ?>

<model>
 <name>Nested Model</name>

 <decl>
 <activityList size = "*n*">
 arrayOfActivities
 </activityList>
 </decl>

 <workflow>
 <segment id = "Start">
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 <fordo begin = "paramone"

end = "paramtwo"
counter = "k"
step = "++">

<execute position = "k" type = "complete">

 arrayOfActivities
 </execute>

 <ifthen index = "k" result = "rolledback" type ="normal">
 <goto paramone = "k-1"

paramtwo = "0">

RollbackAll
</goto>

 <cmd>exitscript</cmd>
 </ifthen>
 </fordo>
 <ifthen type = "expression"

expression1 = "k"
operator = "=="
expression2 = "paramtwo">

 <goto paramone = "paramone"

paramtwo = "paramtwo">

CommitAll
</goto>

 </ifthen>
 </begin>
 </segment>

 <segment id = "RollbackAll">
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 <fordo begin = "paramone"

end = "paramtwo"

A Meta Model For Long Lived Transactions

 Page 83 of 175

counter = "k"
step = "--">

<execute position = "k" type = "rollback">

 arrayOfActivities
 </execute>
 </fordo>
 </begin>
 </segment>

 <segment id = "CommitAll">
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 <fordo begin = "paramone"

end = "paramtwo"
counter = "k"
step = "++">
<execute position = "k" type = "commit">

 arrayOfActivities
 </execute>
 </fordo>
 </begin>
 </segment>
 </workflow>
 <main>
 <goto paramone = "0" paramtwo = "*n*">Start</goto>
 </main>
</model>

Figure 5.5.1 Nested Model Transit Script

This sample script proves that transaction models can be defined using an XML
based meta-model scripting language, in a quite trivial manner. This also proves
the effectiveness of the concepts and ideas introduced to developers through the
Transit Model Solution, particularly the idea of having exploiting the scripting
language’s simple constructs to define the workflows. In addition, the script can
be very easily developed using any XML editor such as Altova’s XML Spy, since it
strictly conforms to XML standards.

In the following section, the design of the TransitModel is defines. The
TransitModel API has various complex sub architectures and algorithms which
allow its operation. These include the flowlist based execution architecture, state
handling architecture, which allows suspension and resumption of transactions,
and the parameter passing framework amongst others. While this section
included pure theory and design of language syntax, the next section includes
conventional application design.

A Meta Model For Long Lived Transactions

 Page 84 of 175

Chapter 6: The TransitModel API

6.1 General Architecture

As previously stated, the Transit model API has a twofold task; that of providing
a structure descriptor interface, which the developer may extend in order to
create a standardized LLT from an array of Activities; and that of providing an
execution engine, which allows suspension and resumption of Long Lived
Transactions. Thus the best way of proceeding with the design process is as
described in the following package diagram:

Figure 6.1.1 Package Diagram – The Transit Model

The Transit Model API is split into two main namespaces, the
TransitModel.Structure namespace which provides the structure needed by
developers; and the TransitModel.TManager namespace, which caters for the
execution, suspension, and resumption of Long Lived Transactions. The
resources package considered of secondary importance, as it will simply contain
shared embedded resources, such as icons, button images, etc… these
namespaces cater for the creation of an appropriate transaction handling
environment.

6.2 TransitModel.Structure

This namespace represents the “base abstract class”, previously described in
Chapter 4 (Section 4.2.1). At this point it has been expanded into a complete

A Meta Model For Long Lived Transactions

 Page 85 of 175

namespace, rather than a simple class. The main task of this namespace is to
provide precise abstract definitions of Activities and LLT’s from which the
developer can extend in order to create a fully fletched Long Lived Transaction in
his application. This allows a developer to exploit this namespace’s facilities to
create an LLT instance, which he then passes to TransitModel.TManager in order
to be executed. Thus all the structural definition and state handling methods
must be present in this namespace, in order to allow the developer to create an
LLT which is interpretable by the TManager component. This leads to the
creation of two main classes; an Activity Class of type abstract, and an LLT class,
both classes handling Activity/LLT structure and states respectively.

6.2.1 TransitModel.Structure – Use Case

The following diagram describes the case in which a developer is making use of
the TransitModel API’s Structure namespace, in order to create a Long Lived
Transaction to book a holiday. Note that the representation of the
TransitModel.TManager module in this diagram is just indicative, since the
TransitModel.TManager design has not been illustrated yet.

Developer

Holiday Planner Application

BookPlane

Book Hotel

BookTrain

BookHoliday

<<include>>

<<include>>

<<include>>

1
 :
 1

TransitModel.Structure

ActivityLLT

LLTInfo ActivityInfo

<
<
ex
ten
d
s>
>

<
<
ex
ten
d
s>
>

<
<
ex
te
n
d
s>
>

<
<
ex
te
n
d
s>
>

<
<
e
x
te
n
d
s>
>

<
<
instan

tiates>
>

TransitModel.TManager

Manager

Holiday Planner

GUI

<
<
u
se
s>
>

<
<
in
clud

e>
>

1 : 1

Figure 6.2.1.1 Use Case for TransitModel.Structure

A Meta Model For Long Lived Transactions

 Page 86 of 175

The developer creates one long lived transaction, hence the 1 : 1 relation with
bookHoliday. This is done by creating an object instance of the
TransitModel.Structure.LLT class. In this case we are assuming that the
developer handles this in the GUI class, which is implemented by him. The
BookPlane, BookTrain, and BookHotel Classes, also implemented by the
developer, extend TransitModel.Structure.Activity, and implement specialized
methods which condition the mode of execution of an activity. Each method is
defined in the TransitModel.Structure.Activity class as a stub. Finally, an instance
of each of the activity classes is created, and is added to the BookHoliday LLT
object, which in turn is passed to TransitModel.TManager. The TManager then
handles execution, suspension and resumption of the Long Lived Transaction.

6.2.2 TransitModel.Structure – Class Diagram

The diagram presented on the next page represents a class diagram which
contains the structure and inter relations of the classes present in the
TransitModel.Structure namespace. While this diagram gives full details about
the classes and their methods, each class is analysed in depth separately, in the
sections which follow;

Figure 6.2.2.1 Class Diagram for TransitModel.Structure

A Meta Model For Long Lived Transactions

 Page 87 of 175

While the LLT class contains the activityList array list to store a number of
activity objects, the activity class contains the previously mentioned stub
definitions which allow a user to run, commit, rollback or compensate an activity,
while suspending or resuming the LLT at any stage. These method descriptions
must be overridden and implemented by the developer, when extending the
activity class.

Two state managing classes have been also been added, the ActivityInformation,
and the LLTInformation classes. The job of these classes is to contain the
current state of an activity, and provide custom get and set methods which allow
state changes. Thus the Activity class and LLT class must inherit from these two
classes respectively, as shown in the diagram. Please note that due to the
suspension/resumption logic, each of these classes must be marked as
serializable, since they may be persisted to disk. More details on the suspension
mechanism are provided in the TransitModel.

6.2.3 TransitModel.Structure.Activity

The series of specialized methods whose stubs are defined in the Activity
abstract class are considered as distinct steps in an activity, since they directly
affect the state of the activity, thus leading to a state change. Actually, the
methods are directly related to the possible states of an activity. These methods
include:

• activityRun(); - Which caters for running an activity.
• activityCommit(); - Which caters for committing an activity.

• activityRollBack(); - Which caters for Roll backing an activity.
• activityCompensate(); - Which caters for Compensating an activity.

If we reconsider the requirements for an activity discussed in chapter 4, it can be
seen that what is being done is simply segmenting the flow of work in an activity
in a structured manner, to allow interpretation by the TManager;

Begin

SQL Transaction BookPlane

SQL QUERY - Check Flight to Heathrow, Tuesday, 6 pm British Jet

IF Seat Found

SQL COMMIT BookPlane

Else
SQL ROLLBACK BookPlane

End

Figure 6.2.3.1 Pseudocode for an Activity Workflow

A Meta Model For Long Lived Transactions

 Page 88 of 175

Each SQL statement in the original Activity pseudocode will now be segmented
into the four methods, where each method indicates a state change. The main
aim of this, besides better interpretation by the TManager, is to allow better
management of states of an activity, and better suspension or resumption
handling of an activity at any of these four stages. A typical method
implementation carried out by the developer will be similar to the following:

public override void activityRun()
{

try
 {
 //Carry out remote server request
 //If response is positive

this.setStatusToCompleted(); //Transaction Successful

//Else if response is negative
this.setStatusToRolledBack(); //Transaction Failed

 }
catch

 {
 // If Server connection has been lost

this.setStatusToWaitRun();
 }
}

Figure 6.2.3.2 Pseudocode For an Activity Method

The activityRun() method represents the method which caters for running the
activity. While the Activity class defines four methods, the ActivityInfo class is
responsible for keeping the current Activity’s status by providing status
management methods such as setStatusToCompleted(). This means that the
activity class must inherit ActivityInfo’s properties and methods. For a full list of
methods see the TransitModel.Structure.ActivityInfo section.

The second important issue which, even though handled by the TManager, has
its framework defined in the Structure namespace, is the concept of suspension
and resumption of activities. One may notice the try catch statement in the
previous code example. This stipulates that, if a server connection error
Exception is thrown, the Activity Status is set to Waiting; which means that the
activity has been suspended. A suspended activity may be resumed, by calling a
set of resume methods, which mirror the Activity’s four standard methods.
These methods are also defined in the abstract class, and must also be
implemented by the developer. The resume methods include:

• activityResumeRun(Object o);

Which caters for resuming an activity which switched to suspended
state in the activityRun() method.

A Meta Model For Long Lived Transactions

 Page 89 of 175

• activityResumeCommit(Object o);

Which caters for resuming an activity which switched to suspended
state in the activityCommit() method.

• activityResumeRollBack(Object o);

Which caters for resuming an activity which switched to suspended
state in the activityRollBack() method.

• activityResumeCompensate(Object o);

Which caters for resuming an activity which switched to suspended
state in the activityCompensate() method.

These methods allow the developer to resume an activity, according the step in
which it had switched to suspended state. In fact, the generic object parameter
has the sole purpose of allowing the user of the final system to manually input
any necessary information that an activity may need in order to resume; input
which would have been sent automatically by the server, had the connection not
failed. The manual input process will occur through Resume handler GUI
provided by the TManager namespace.

6.2.4 TransitModel.Structure.ActivityInfo

As explained, this class keeps the current state of an activity which inherits it,
and provides the following public methods which aid state handling by the
developer;

• setStatusToIdle();

• setStatisuToCompleted();

• setStatusToCommitted();
• setStatusToRolledBack();
• setStatusToCompensated();

While these methods indicate the actual status of an activity, a set or mirroring
methods indicate the suspended state of an activity, according to the standard
method in which it switched to suspended state:

• setStatusToWaitRun();

• setStatusToWaitCommit();
• setStatusToWaitRollBack();

A Meta Model For Long Lived Transactions

 Page 90 of 175

• setStatusToWaitCompensate();

The status system basically works by having a global variable named “status” in
the activityInfo class, and having the listed methods change it accordingly.

6.2.5 TransitModel.Structure.LLT

The LLT class is a conventional class, containing the previously discussed public
array list structure, into which Activities may be inserted. While originally
intended to be abstract with the inclusion of execution methods, it has been
preferred to move control handling completely to the TransitModel.TManager
namespace and use this namespace purely for structural purposes. Having a
similar nature, the only difference between the LLT class and the Activity Class is
that the Activity class is abstract and contains stub methods, thus being intended
to be extended, while the LLT class is conventional, and is simply instantiated.

Once the developer has created a system of activities which extend from the
Activity Class and implemented each of its compulsory methods, each class is
considered to be a complete activity. It can then be simply instantiated from a
controller class such as the Holiday Planner GUI in the previous use case
diagram, and added to an LLT Object. This LLT Object is then passed on to the
TManager for processing and execution.

6.2.6 TransitModel.Structure.Info

This class has a very similar, yet simpler purpose to the ActivityInfo class. It also
contains state handling getter and setter methods, which may be used by the
developer to switch the state of the overall LLT:

• setStatusToIdle();

• setStatusToActive();
• setStatusToCommitted();

• setStatusToAborted();

• setStatusToWait();

These methods function with the same current status global variable string
concept, however adhering to the statement made in the specifications section
which states that the outcome of an LLT is either committing or rolling back. In
this case the active state indicates that the LLT is currently in processing, and
the wait state indicates that the one of the LLT’s activities have been suspended.

A Meta Model For Long Lived Transactions

 Page 91 of 175

6.3 TransitModel.TManager

The TManager namespace contains the interpreter and runtime engine, which
caters for execution of the LLT and handles suspension and resumption issues.
The Resume GUI mentioned in the specifications section has also been catered
for. TManager has the responsibility of abstracting the developer completely
from transactional issues, except for the LLT structure definition through the
TransitModel.Structure namespace, which is quite simple in itself. The TManager
namespace is further subdivided into two main namespaces, as displayed in the
following package diagram:

Figure 6.3.1 Package Diagram for TransitModel.TManager

These two sub name spaces contain a series of classes which handle the
following set of tasks:

• Language Parsing.

• Generation of a workflow.

• Execution of the workflow.

• State switching according to workflow.
• Suspension and Persistance to disk, and resumption of an LLT.

Since these tasks are closely related, there is no clear cut logical distinction
between the handling of each task in the Solution. While logical design of the
system has overlapping tasks, physical design still consists of distinct classes,
each with a separate task. In fact the system design includes an architecture of
closely related modules each of which contribute to the system by carrying out
their distinct tasks. These include a parser, an execution engine, language
descriptor classes, and abstract classes which provide transaction structure. The
component structure of the TManager includes the following items:

A Meta Model For Long Lived Transactions

 Page 92 of 175

Coordinator Manager

Language Blocks
LLT Object
Passed

from Application

XML Script

Figure 6.3.2 Component Diagram for TransitModel.TManager

The solution operates in the following manner; a reference to an instance of the
Manager component is obtained by the developer in his application, to which he
passes the LLT which has been constructed using the TransitModel.Structure
namespace. Upon instantiation of the Manager component, the Manager
component requests a reference to an instance of the coordinator component,
forwarding the obtained LLT to it in the process. At this point, the actual parsing
and workflow generation process commences.

6.3.1 TransitModel.TManager.Logic

This namespace is responsible for providing both a programmatic and a graphical
user interface, with which the developer or end user may access the Transit
Model solution externally, in order to either process transaction results, or in
order to integrate it into another top level solution. It contains three main
classes, the Manager, the TransitControlPanel, and the Coordinator.

6.3.1.1 TransitModel.TManager.Logic.Mgr

The Manager class is one of the two classes in the Transit Model Solution whose
methods are public, thus completely viewable and evocable by external users,
when keeping in mind that the final produce will consist of an API. It is of type
singleton, thus having only one possible instance of it at all times. This has been
done in order to avoid putting the external developer in confusing situations
where multiple instances of the manager are present. The manager contains the
methods necessary for general operation of the solution. These include:

A Meta Model For Long Lived Transactions

 Page 93 of 175

• Get Instance(); - This method returns a method instance, and
automatically retrieves a coordinator instance.

• BrandNewLLT(); - This method creates calls the necessary functions,

passing the LLT Object which the user provided, in order to return a
parsed Model Object, which is ready to be executed.

• LoadLLT(); - Loads a suspended LLT Object from disk, which is ready to

be executed.

• AbortLLT(); - Clears from memory any information about the currently
loaded LLT.

• runLLT(); - Actually runs the Long Lived Transaction by calling the

executeNode() method in the Main object found within the Model object.

It is the manager which amalgamates all the logic contained in the Transit Model
Solution, in order to process a transaction. It accepts an LLT from the user as a
parameter; parses the script and fuses the Activities in the LLT using the
coordinator class, and executes the transaction by calling the appropriate
execute methods. For execution details, please see the following sections.

6.3.1.2 TransitModel.TManager.Logic.TransitControlPanel

The TransitControlPanel class serves as a simple Graphical User Interface which
the developer may access externally by invoking it, in case a manual input needs
to be used for Transaction resumption purposes. Through the GUI, the end user
may decide to suspend or abort a suspended transaction through a series of
buttons. A simple transaction logger is also provided. The GUI is also based on
the singleton model, allowing only one instance of the class at all times.
Screenshots are provided in the suspension and resumption concepts section.

6.3.1.3 TransitModel.TManager.Logic.Coordinator

The coordinator class caters for the generation of a complex architecture,
obtained through parsing and workflow generation, which enables easy
execution of the Long Lived transaction provided by the user, according to a
Transit Script which is embedded in the system. The coordinator loads, parses,
and creates this architecture, or workflow, which is then executed by the
manager. A method in order to parse each language construct is present,
resulting in the formation of Language Blocks. For the method listing of this

A Meta Model For Long Lived Transactions

 Page 94 of 175

class, please see the Appendix Section. For an explanation of the language
blocks concept, please see the following sections

6.3.2 TransitModel.TManager.LanguageBlocks

The language blocks namespace can be considered to contain a series of classes
which map the XML’s constructs into c# objects, while constructing a complete
architecture which renders execution easy. Thus, taking an example, for a
<fordo> xml tag, TManager.LanguageBlocks contains a fordo class, which caters
for all conditions and issues of the fordo class. The most important classes in
the LanguageBlocks namespace are highlighted below.

6.3.2.1 TransitModel.TManager.LanguageBlocks.IBlock

This is an abstract class, with various utilities which allow advanced parameter
handling and variable value assignments, in classes which inherit from it. All the
classes which directly make part of the workflow architecture inherit from Iblock,
and thus have to implement the stubs defined in the IBlock class. Following is a
class diagram representing the IBlock abstract class, which plays a very
important part in the execution process, especially variable and parameter
handling:

Figure 6.3.2.1.1 Class Diagram for the IBlock Component

The various relevant methods and properties present in this class are further
explained in the following sections. Please note that the localDecl, variable
refers to a list of local variables, which is present in each Language Block, while
the executeNode stub refers to the method which must be implemented by each
language block, which makes part of the resulting workflow. Taking an example,

A Meta Model For Long Lived Transactions

 Page 95 of 175

a ForDo Object inherits from IBlock, and thus must implement the method
executeNode(), which in turn executes all the children in the fordo loop, for the
number of times specified by conditions parsed from the script. The getVariables
and setVariables methods are explained in detailed in the following sections.

6.3.2.2 TransitModel.TManager.LanguageBlocks.Structs

The structs namespace contains any necessary structures or dataholder classes
which are needed by any class in the TransitModel.TManager namespace. The
most important class in this namespace is the StateHolder class, which is used
extensively for suspension/resumption purposes. More details are provided in
the “concepts” sections.

6.3.2.3 TransitModel.TManager.LanguageBlocks.Main

The main class is a class of type LanguageBlock, and inherits from the IBlock
abstract class. The reason for highlighting this class is that it serves as a starting
point for execution of the LLT. In fact, the structure of the main language block
can be identified in the following class diagram:

Figure 6.3.2.3.1 Class Diagram for the Main Language Block

The goto statement present in the main contains a reference to the starting
segment from which execution should commence. Exeuction is triggered off by
the manager class, which calls the executeNode() method of this Main object.

6.3.2.4 TransitModel.TManager.LanguageBlocks.Execute

The execute class, also being in the LanguageBlock namespace, and also
inheriting form IBlock, is one of the most crucial classes in the Transit Model
Solution. This is due to the fact that it is the class responsible for catering for
the execution of activities which have been passed by the end user. Various
structures are present in this class, which enable the possibility of suspension

A Meta Model For Long Lived Transactions

 Page 96 of 175

and resumption of Long lived transactions. The structure of the class is
displayed in the diagram below. One can identify a series of relevant methods,
including the executeNode method, which caters for execution process of an
Activity, and four separate exeution nodes, handleCompleteExecute,
handleCommitExecute, handleRollbackExecute, and handleCompensateExecute,
which cater for the different stages of the execution process of an activity.

Figure 6.3.2.4.1 Class Diagram for the Execute Language Block

6.3.3 Concepts - Language Parsing & Workflow Generation

The parsing process is handled by the coordinator component, where the xml
script resident in a configuration folder named “Model” is loaded, and parsed in
the coordinator class using a specific logic, as displayed in the flowchart in
section 6.3.3.4.

Initially, the root node is selected, and XPath is used to determine whether each
of its children is present. While all children must be present for a successful
parse, the most important child tags are the workflow tag, the main tag, and the
global declaration tags. For tag details please refer to the previous scripting
language chapter. The parsing and workflow generation processes involve two
main novel concepts; the idea of having language blocks, and the idea of having
flow lists. Another issue which is related to workflow generation is the structure
used for parameter passing and handling.

6.3.3.1 Language Blocks

The concept of language blocks involves two main processes:

A Meta Model For Long Lived Transactions

 Page 97 of 175

• The absolute mapping of the Transit Script info Object form.

• The Plugging of Activities from the developer defined LLT into the script’s

placeholders.

In order to obtain mapping from the XML script into object form, it has been
considered ideal to create a class which represents each tag in the script, hence
the languageblock namespace in the solution. Thus, an object of type tagname
can be created in the coordinator, and any results or child nodes may be stored
in it. Child nodes may be other language blocks. Consider a practical example;
a workflow language block object may contain three segment language block
objects, which in turn may contain fordo, or execute languageblock objects;

WorkFlow Languageblock Object

Segment A Languageblock Object

ForDo

IfThen

Execute

Segment B LanguageBlock Object

ForDo
IfThen

Execute

Figure 6.3.3.1.1 Structure of the Workflow Language Block

The main goal is that the parsing process returns an object of type Model, which
is actually a hierarchy of objects representing a script instance with the particular
activities for this case plugged in. Thus the object of type model would actually
represent a transaction context.

For this reason, tags have been categorized into two main forms, those which
execute, and those which don’t. Executable tags include tags whose sole
purpose is not that of storing information, but also of executing a command,
such as <execute> or a series of commands, such as <fordo> or <ifthen>,
while does which do not execute have purely a structural or storage nature such
as <counter>. The following table defines all the tags and their categories:

 Tag name Executes Has Children

<model> No Yes (Name, Decl,
Workflow, Main)

<decl> No Yes
(activityList, counter)

A Meta Model For Long Lived Transactions

 Page 98 of 175

<activityList> No No

<counter> No No

<workflow> No Yes (Array of segments)

<segment> No Yes (Begin Node)

<begin> Yes Yes (Flow list)

<fordo> Yes Yes (Flow list)

<ifthen> <elseif> <else> Yes Yes (Flow list)

<execute> Yes No

<goto> Yes No

<cmd> Yes No

<main> Yes Yes (Goto)
Figure 6.3.3.1.2 Table for Transit Script Tag Classification

The tags, (or object mappings) which are marked as execute, will extend from
the IBlock interface, which defines parameter passing structures (discussed in
the following sections) and an execute method stub. Thus, as previously stated,
each language block which executes, has an execute method.

A parent language block may execute a child language block by calling its
execute method. For example, if a <begin> languageblock contains an <ifthen>
languageblock, the execute statement of <begin> must call the execute
statement of the <ifthen> which in turn calls the execute statement of any of its
child nodes. A workflow is thus constructed, with its starting point being the
execute method contained in the <main> languageblock, which the TManager
calls in order to initiate transaction execution. In the case of a language block,
having multiple children, the concept of flow lists is implemented. The following
State transition diagram illustrates this workflow example:

Figure 6.3.3.1.3 Sequence Diagram for Workflow Generation

A Meta Model For Long Lived Transactions

 Page 99 of 175

6.3.3.2 Flow Lists

Each language block object which executes may either execute a single
command, as in the case of <goto>, or execute a number of child nodes which it
contains, sequentially. These child nodes are typically stored in an Array List in
the language block object, and each contain an execute method. A workflow
structure is basically this ArrayList of structures which is present in the constructs
indicated in the table in the previous section. Constructs which contain a flowlist
typically have an execution method which iterates through the flow list,
executing each child node. Flow lists are major contributors towards the creation
of a workflow.

6.3.3.3 Parameter Passing

While actual parameter evaluation has been designed to occur during the
execution phase of the Long Lived Transaction, it is imperative that the structure
used for parameter passing is defined in the parsing process, and is directly
related to variable declaration. Global variables and local variables are handled
in separate manners, as it will be seen in the flowcharts in the following section.

• Global variables

During the parsing process, as soon as the <model> tag is parsed, the
presence of <decl> tags is checked. If present, a Language Block of type
GlobalDecl is created, and this is available to all the child nodes of the
<model> tag, since it is the second highest Language Block in the Model
Object hierarchy, second only to the Model Tag (see “model object”).

• Local Variables

On the other hand, local variable declarations have been handled by
providing each Languge Block element with a table, which contains the
local variables assigned to that segment and its children. During the
parsing process, as soon as a new segment tag is found, a private global
arraylist in the coordinator, named currentLocalDecls (current local
declarations) is initialized. Parsing of the segment’s children continues,
and if a <decl> tag is encountered, the array list is filled with the names,
and initial values of the variables. When parsing of the particular segment
has completed, the array list, or table, is propagated to all the Language
Blocks present in the segment, by assigning each individual Language
Block’s local variable table declaration, a pointer to the arraylist in
memory. Each segment has its own arraylist in memory, to which its
children point. This ensures that each child node of a segment has access
to the segment’s local variables. For details see the following flowcharts.

A Meta Model For Long Lived Transactions

 Page 100 of 175

6.3.3.4 Workflow Generation Logic

The following set of flowcharts defines the complete parsing and workflow
generation process which occurs in the coordinator class in an adequate amount
of detail:

End

Create Name
LanugageBlock &

store name string

<name>

Create Main

Block & parse
Goto

<main>

else

Throw

Exception

else

Check Model

Structure
end of model

!
en
d
 o
f
m
o
d
e
l t
a
g

Return Model
Language BL oc k

Check OK

Check Failed

Get nex t model

child element

Create GlobalDecl
Block & store

act ivities & counters

<decl>

CreateWorkFlow
Block & parse all

children

<workflow>

Store Activity

List & counters

Store name

String

C
h
eck

 F
aile

d

Check OK

Store Resulting

Workflow Object

Get Activity to

which execute

refers & store

Conditions

Check Block
Structures

else

else

Start Get Root Node

Create Model

Language Block
<model>

Throw

Exception
!= <model>

To Nex t

Page

From Next

Page

Figure 6.3.3.4.1 FlowChart : Workflow Generation Part 1

A Meta Model For Long Lived Transactions

 Page 101 of 175

In the previous diagram one can see that while various tags structure the
scripting lanugage and the resulting model structure, the core part of the logic
operations lies in the <workflow> tag and its children, whose operation is
described in the following flowchart:

Get nex t child

element

Throw

Exception
!= <workflow>

<segment>
Create Segment

LanugageBlock

else

n
o
t
e
n
d
 o
f
w
o
rk
flo
w

end of workflow
Check WorkFlow

Structure

C
h
e
ck
 F
ai
le
d

Check OK

End

Return
Workflow Language

BLock

Begin Parse
Workflow

Fill LocalVar Table
in Parser

<decl>

Create Empty
LocalVar Table &

Store table in Parser

Create Begin

Block, Set Begin's

LocalVar Table to

that in Parser

<begin>

else

Create

Workflow
Language Block

<workflow>

Get nex t

segment child

element

Throw

Exception

else

Check Segment

Structure
end of segment

!
en
d
 o
f
se
g
m
en
t

Return Segment

Language BL oc k

Check OK

C
h
e
ck
 F
ai
le
d

To Nex t Page

To Prev ious Page

From Previous Page

From Next Page

Figure 6.3.3.4.2 FlowChart : Workflow Generation Part 2

While as explained in previous sections, the <decl> tag caters for local
declarations, let us again zoom into the core logic, and analyze the <begin> tag,

A Meta Model For Long Lived Transactions

 Page 102 of 175

which actually contains a mix of classic imperative language constructs, and
custom transaction specific constructs:

End

Create Relevant

Block, Set Begin's

LocalVar Table to

that in Parser

parent of a flowlist

Create Relevant

Block, Set Begin's

LocalVar Table to

that in Parser

<execute>

else

Throw

Exception

else

Check Begin

Structure
end of begin

!
en
d
 o
f
b
eg
in

Return Begin

Language BLock

Check OK

C
h
ec
k
 F
a
ile
d

From Previous Page

Get next begin

child element

Run Using Begin

Block Logic

Create Goto Block,
Set Begin's LocalVar

Table to that in

Parser

<goto>

Create Relevant

Block, Set Begin's

LocalVar Table to

that in Parser

<cmd>

Store

Parameters &

Segment

Reference

Check GOTO

Structure

C
h
eck

 F
a
ile
d

Check OK

Check CMD

Structure

Store Command

Get Activity to

which execute

refers & store

Conditions

Check Execute
Structure

To Previous Page

else

else

Figure 6.3.3.4.3 FlowChart : Workflow Generation Part 3

A Meta Model For Long Lived Transactions

 Page 103 of 175

Please note that in the flowchart on this, all tags which include a series of
children, that is, <fordo>, <ifthen>, <elseif>, and <else> have all been
amalgamated into one generic process. While this greatly reduces flowchart
complexity, it does not have a negative impact on the representation, since their
operational logic is identical to that of the <begin> tag, which has been
described in full.

6.3.3.5 The Model Object

The result of this parsing algorithm is an object of type Model, which contains all
the structures necessary to carry out an execution procedure. This includes
variable declarations and parameter passing constructs, together with an
appropriate workflow. Taking the classic Holiday planner example, the structure
of a typical model object would in this case look similar to the following:

Figure 6.3.3.5.1 Resulting Model Object – Workflow Tree Structure

A Meta Model For Long Lived Transactions

 Page 104 of 175

6.3.4 Concepts - Execution

At this point, execution is a rather a trivial matter. The execute method of the
main component is called, in the following manner:

Model.main.executeNode();

Due to the architecture developed, a chain reaction process starts, where the
main execute method runs the execute method of the first goto object, which in
turn runs the execute method of the begin object inside the referred segment
object, and so on. The process either throws an exception, or returns the
processed Model Object, which the developer can use to extract results from.
The non trivial processes which occur during the execution process are two;
parameter passing and variable handling, and state switching of the activities
which are executed. Let us now revisit parameter passing, this time from an
executive point of view, and then analyze state switching.

6.3.4.1 Parameter Passing Revisited

In the transit script, as explained, the concept of parameter passing involves
assigning a value to a local or global variable through a goto statement, by
matching the attribute name which represents a parameter to the name of a
variable inside a segment. Technically, this occurs by reading the parameter
attribute in the goto tag, and searching a match for it in the segment’s local
declarations arraylist. If a match is found, the value in the arraylist is updated,
and thus made available to all the children in the segment.

6.3.4.2 Accessing Variables Revisited

Nodes get or set variable values by two special methods which are present in the
IBlock abstract class, named “getvariables()” and “setVariables()”. The child
node does not need to cater for locating the position of a variable, as in local or
global, but simply needs to provide a variable name to one of these two
methods, and if the variable exists locally or globally, the value is updated, or
returned. These two methods simply initially traverse the local variable table; if
unsuccessful, they traverse the global variable table, in order to find the
requested variable. If still unsuccessful, an exception is thrown. The following
diagrams depict the concept of parameter passing, by updating the segment’s
arraylist values;

A Meta Model For Long Lived Transactions

 Page 105 of 175

Segment 1

Memory Heap

GOTO:
segmentref = "2"
paramone = "2"

paramtwo = "*n*"

Other Processes

Segment 2

GOTO:
segmentref = "3"
paramone = "k"

paramtwo = "*n*-1"

Other Processes for

example for loop which

uses counter k;

Segment 3

End

Other Processes

Local Declarations List for

Segment 1

Name : paramone

Value : 0

Name : paramtwo
Value : 0

Local Declarat ions List for Segment 2

Name : paramone

Value : 2

Name : paramtwo
Value : *n*

Name : k

Value = 0

Local Declarations List for

Segment 3

Name : paramone

Value : k

Name : paramtwo
Value : *n*-1

Main GOTO:

segmentref = "1"

paramone = "0"
paramtwo = "*n*"

Figure 6.3.4.2.1 Parameter Passing in the Transit Model Solution

Initially, all the values in the tables in the heap are set to 0. However, as
execution starts, the first goto assigns parameter values to the first table. Each
goto further propagates parameter values, assigning them with the “name
matching” technique previously mentioned. Thus, parameter passing is made
possible. On the other hand, the following is the pseudocode for the two crucial
methods present in the IBlock abstract class which allow the getting and setting
of variable names;

public string getVariables(string variableName)
{

try

 {
foreach(Variable c in this.localVariables)

 {
 if(c.Name == variableName)
 {

 return c.CounterValue;

A Meta Model For Long Lived Transactions

 Page 106 of 175

 }
 }

 foreach(Variable in Model.Decl.GlobalVariables)
 {

 if(c.Name == variableName)
 {

 return c.CounterValue;

 }
 }

 throw new Exception("Variable not found");
 }

catch
 {

 throw new Exception("Variable not found");

 }

}

public void setVariables(string variableName, string variableValue)
{

try

 {

 foreach(Variable c in this.localVariables)
 {

 if(c.Name == variableName)
 {

 c.CounterValue = variableValue;
 return;

 }

 }

foreach(Variable c in Model.Decl.GlobalVariables)
 {

if(c.Name == variableName)
 {
 c.CounterValue = variableValue;
 return;
 }

 }

A Meta Model For Long Lived Transactions

 Page 107 of 175

throw new Exception("Variable not found");

 }
catch

 {

 throw new Exception("Variable not found");

 }
}

Figure 6.3.4.2.2 Pseudocode for getVariables() and setVariables() methods

It can be observed that in both cases, the local table is initially traversed to look
for the requested variable, if not found, the global table is traversed. If the
requested variable is still not found, an exception is thrown. While these
methods handle getting and setting of variables, variable values are initially in
expression format, which must be evaluated in order to be significant. Variable
transformation from expression format to literal format is catered for by special
evaluator methods, also present in the IBlock abstract class.

6.3.4.3 Variable Expression Evaluation

In order to be able to handle n based modeling, expression evaluation is a very
important factor in this project. While expression syntax has been explained in
the Transit Scripting Language chapter, let us now define the detailed process
which leads to evaluation of an expression. Initially, *n* values are handled
during the parsing process, and are immediately substituted throughout the
Model Object with the integer value of the size of the Array List containing the
Activities which make up the LLT.

Secondly, two specialized methods, also present in the IBlock abstract class, are
used to handle expression building and evaluation; the expressionBuilder() which
takes n based expressions such as “*n* + k + 1” and transforms them into literal
valued expressions, thus “3 + 2 + 1”, and the expressionEvaluator() method,
which takes a literal valued expression, such as “3 + 2 + 1” and evaluates it,
thus, considering our example, resulting in “6”. This method permits n based
expressions to be built and evaluated, thus permitting n based modeling, which
is one of the requirements defined in the initial chapters.

6.3.4.4 State Switching

While the implementation of state switching is completely handled by the
developer, there are certain cases where the change in state directly effects
execution in a manner, outside of the normal workflow process. While the

A Meta Model For Long Lived Transactions

 Page 108 of 175

“completed”, “committed”, “compensated”, and “rolledback” states are handled
by the user, in the TransitModel.Structure namespace, and conditioned by the
script, the “wait” states occur due to erroneous runtime conditions, such as a
third party server connection loss during the execution of the transaction. This
induces us to add a set of structures to development, which handle the cases in
which the execution of an activity returns a wait state.

6.3.4.5 Suspension and Resumption of an LLT

This is a feature present in the Transit Model Solution which caters for the case
in which a “wait” state is returned from an execute statement. As stated in the
requirements and specifications, in this case, ideally the transaction goes into
suspended mode, and may be resumed at a later time, possibly after an
application restart.

One rather complex concept must be implemented, in order to make suspension
and resumption of a long lived transaction possible; the concept of state
tracking. The main idea is that of having an array list structure which keeps a
list of all the state changes that each of the activities underwent during
execution, so that when an activity is suspended, and then resumed, the part of
the workflow which as already executed may be “simulated”, without re-
executing the actual activities.

In order to cater for suspension/resumption, various minor changes have to be
made to the conventional architecture of the system. These include the
following:

• The addition of a resume Boolean value to the coordinator class. This
indicates whether the loaded model is “brand new”, or “resumed”, thus
possibly having already half executed.

• The conversion of all the language blocks and related models into
[Serializable] objects, thus allowing persistence.

• The addition of a specialized structure, which keeps a record of each state

change which happens to all the activities in a long lived transaction.

• Changes must be done to the executeNode() method of the <execute>
languageblock, since this is the only language block which is able to
execute an LLT, thus having direct control for suspension and resumption
of an activity.

A Meta Model For Long Lived Transactions

 Page 109 of 175

6.3.4.6 Suspension of an LLT – State Tracking

The main architectural change which must be introduced is the creation of a
specialized structure which caters for keeping a record for each state change
which occurs to each activity in an LLT, as execution proceeds. This procedure
has the sole purpose of determining which activity has already executed, and till
which point, in order to allow a stable resumption, in case of suspension. A
special class, the stateHolder class, caters for the implementation of this State
Tracking structure. The stateHolder class possesses the following structure:

Figure 6.3.4.6.1 Class Diagram for StateHolder Class

An array list of objects of type StateHolder is present in the <workflow>
language block. The amount of objects present in the arraylist equals the
number of activities present in the LLT. Each object instantiated from this class
will keep track of each state change which occurs to a particular activity, every
time the <execute> language block’s executeNode() method calls one of its
methods. Upon each execution, a new entry with the state change is added to
the activityStateList array list, and the current state is updated with the current
size of the activityStateList.

Upon the switching of the state of an activity to one of the waiting states, the
following procedure takes place:

• The Resume Boolean variable in the <workflow> object is set to true.

• The Waiting state is added to the activityStateList of the particular activity
which failed. This activityStateList is contained in the array list of state
holders in the <workflow> object. The waiting state may be any one of
the four wait states discussed in the previous TransitModel.Structure
section.

• Since all the classes directly related to the Model object have been set as
serializable, the object is simply serialized to a binary encrypted file on
disk.

A Meta Model For Long Lived Transactions

 Page 110 of 175

In order to make this process possible, the <execute> language block’s
executeNode() method’s logic has been altered, to conform to the one in the
following flowchart:

Start

Get Activ ity to

Excecute

!Resume

Execute Activ ity

Status is:

waitrun

waitcommit
waitrollback

waitcompensate
Set

Workflow.Resume

to true

End

S
ta
tu
s
is
:

co
m
p
le
te
d

co
m
m
it
te
d

co
m
p
en
sa
te
d

ro
lle
d
b
a
ck

Add state to
Workflow.

activitylist[activitypositi

on].statelist

Add state to
Workflow.

activitylist[activitypositi
on].statelist

Serialise Model

Object To Disk

Throw

Suspended
Except ion

See Next FlowChart

Figure 6.3.4.6.2 FlowChart : Suspension of an LLT

The suspension process has thus been tackled in a rather simple way, however,
let us now consider the issues of resuming a half executed, suspended LLT.

6.3.4.7 Resumption of an LLT – Activity Execution Simulation

The resumption process, requires a further architectural addition to the
<execute> language block’s executeNode() method, which allows the
“simulation” of activity executions which have already occurred, without actually
re-executing the activity. Thus, when resuming an activity, the script will
execute from the start. However, when arriving at an execute statement, if the
resume mode in the workflow is set to “true”, the next value on the
activitystateList of the state tracking structure is retrieved, thus simulating a
state change without executing the activity. The following flowchart represents
the addition to the method’s logic which was made:

A Meta Model For Long Lived Transactions

 Page 111 of 175

Open
Workflow.activity

StateList

Resume == true

Read current

state position

Status is:
waitrun

waitcommit

waitrollback

waitcompensate

Set
Workflow.Resume

to false

End

S
ta
tu
s
is
:

co
m
p
le
te
d

co
m
m
it
te
d

co
m
p
e
n
sa
te
d

ro
lle
d
b
a
ck

Increment

current position

Add state to
Workflow.

activitylist[activitypositi
on].statelist

From Prev ious FlowChart

Get state at

current position

Get Activity to
Excecute

Execute
ResumeRun

Execute
ResumeCompens

ate

Execute

ResumeRollback

Execute

ResumeCommit

wait

run

wait

commit

wait
rollbk

wait

cmpnst

Get User Input

from GUI

Remove Last Old

state fromWorkf low.
act ivitylist[ac tivityposition].st

atelis t

else

else

else

Figure 6.3.4.7.1 FlowChart : Resumption of an LLT

While simulated execution proceeds, a point arrives when a switch between
simulated execution and actual execution must take place. This point is
indicated when the next state in the activityStateList for a current Activity equals
a wait state. This signifies that the point where the activity had been suspended
has been reached.

At this point, one of four resume methods is called, according to the particular
stage in which the activity had suspended. If the activity had returned a “wait”
status as a result of an attempted execution of its “activityRun()” method, the
resumeRun() method is now called. The same logic applies to the other three
methods, resumeCommit(), resumeRollback(), and resumeCompensate(). The
point at which the activity had halted is determined by the type of wait message,
“waitrun” indicates a suspension in the run method, “waitcommit” indicates a
failure in the commit method, and so on. The resume methods necessitate the
instantiation of a specialized GUI, which enable the user of the application to
input the necessary information needed by the resume method, in order to
continue execution. As explained, had no suspension occurred, this information
would have been automatically received by the Transit API, without the need of
user intervention.

The GUI consists of a simple input interface, into which the user inputs raw bytes
of information, which are stored in a generic System.Object. The main reason
for storing the information in a generic object, is that since different activities
may need different input object types, the Transit Model Solution must cater for
allowing manual input of multiple object types, according to the currently
suspended activity. GUI input into a System.Object is ideal to cater for this

A Meta Model For Long Lived Transactions

 Page 112 of 175

solution, since any input can be handled, and then type cast by the activity’s
resume method, into the desired object type;

Figure 6.3.4.7.2 Screen Shot for the Transit Control Panel Resume GUI

In this example, the System.Object will contain a manually input “Server OK”
message, which the method may cast into a string, or an array of characters, as
needed. While this implementation servers the purpose of proving a concept, in
a full scale application, advanced object input support may be added to a
commercial system.

At this point, normal execution must continue. This is indicated by setting the
resume mode Boolean value to false, thus, since the <execute>’s executeNode()
method checks the resume mode variable’s value each time that it is called, upon
the next execute language block call, a normal execution will occur. Finally, the
Long lived transaction may either complete, abort, or get suspended for a second
time.

A Meta Model For Long Lived Transactions

 Page 113 of 175

Chapter 7: Conclusion

7.1 Producing an Integrated Solution

The result obtained when amalgamating the Transit Scripting Language, the
Structure namespace, and the TManager namespace is one compact visual c#
.NET 1.1 based Dynamic Link Library, which may be integrated into any .NET
based application requiring support for long lived transaction processing. In this
particular implementation, three model template scripts have been provided, the
classical Nested Model, a custom Saga based model, and an LLT model
conceptualized in the JSR 95 specification. However any model may be
implemented using the transit scripting language constructs. The TransitModel
API is extremely simple to use, since the amount of function calls needed to
construct a long lived transaction, and process it are relatively small. In the
following section, a practical example of the integration, and use, of the transit
scripting model, in the typical Holiday Booking example is provided.

7.2 LLT Enabling a Typical Application using Transit

In this example it has been assumed that the developer is creating a simple
Travel Agent’s Booking system, which requires long lived transaction support.
Let us assume that the developer is using .NET version 1.1, Visual C#, and Visual
Studio 2003 Enterprise Architect. The developer must follow the next steps:

• Add a reference of the TransitModel Library to the current Project.

• Create a set of Activity Classes, which inherit from
TransitModel.Structure.Activity, and implement the necessary methods as
shown in the previous chapters. In the holiday booking example’s case,
three classes should be implemented, BookPlane, BookTrain, and
BookHotel, each with their own implementations and connections to
remote servers.

• Create an arrayList object, and add these classes to it, in the order the
developer wishes them to be processed by the particular model chosen.

A Meta Model For Long Lived Transactions

 Page 114 of 175

• Create an instance of TransitModel.Structure.LLT, and copy the arrayList
object of activities to it.

• Call the TransitModel.TManager.Logic.Mgr.GetInstance() method.

• Call the Mgr’s brandNewLLT() method, passing the freshly constructed LLT
object as parameter.

• Call the runLLT() method.

• Process the results and display them on screen.

In the top level application, the developer must also handle for calling an
instance of the TransitModel.TManager.Logic.TransitControlPanel GUI, which
may be invoked by the developer in order to handle resumption of suspended
LLT’s. Since the GUI is also based on the singleton model, its getInstance()
method must be called. For a complete coverage of an example application,
please view the appendices section.

7.3 Transit Model Solution as an Open Source Project

One of the initial goals of this project has been that of posting the resulting
research and code to the open source community, with the intention of creating
a stream of feedback from experts competent in this area from this community.
This feedback would allow the project to be improved from a series of aspects,
including inclusion of previously unthought-of features and the discovery and
fixing of any bugs gone undetected amongst others. Open source projects must
also conform to a set of features such as formal versioning of file releases,
patches and bug fixes amongst others, which could be of benefit both to the
project and to the developers who download and use it.

It has been felt that the best way to transform the Transit Model Solution into an
open source conformant project is by posting it the http://www.sourceforge.net
open source community, through a project submission application for provision
of space on their servers. This also served as an exercise to gauge the quality of
the project, since project submission to source forge are reviewed by a series of
technical staff, before being approved. The submission to source forge brought
about the following changes/feature additions to the Transit Model Solution:

• Web Site: Open source practice (as stated by sourcefource) includes
the creation of a web site which presents the project to the open source
community. This should include a brief project description, together with
links to the appropriate documentation, source code, and binary files.

A Meta Model For Long Lived Transactions

 Page 115 of 175

Links to the various open source communication tools, in this case offered
by sourceforge should also be provided. The site for the Transit Model
Project has been implemented and uploaded to the space provided on:
http://transitmodel.sourceforge.net. For a screenshot of the site, see the
appendices section, appendix H.

• Source & Binaries: For a project to be classified as open source, both
its source code and its binary files must be posted to the open source
community. In this case, source forge provides project subscribers with a
standard file release system to which project administrators can post both
source and release files. Source and release files for the Transit Model
Solution have been made available on :
http://sourceforge.net/projects/transitmodel/

• File Versioning: When submitting source, binary files, or bug fixes, they

must be appropriately versioned, typically using an incremental numbering
system. Source forge provides a standard versioning structure through its
specially implemented file release system. There is currently only one
version release for the Transit Model Solution, that is, version 1.0,
available publicly in the downloads section of the source forge site.

• Bug Reporting & Patch Manager: This is the first of a series of

communication tools which enables members in the open source
community to report bugs to the project administrator. In our case, it is
available through the source forge site for the Transit Project, together
with a patch manage, which hosts similar properties to the file release
system, however catering solely for project patches.

• Feature Requests: This utility allows community members to post
suggestions to the project administrator, specifically, desirable features
which the project does not possess, and which would significantly improve
the project. Feature requests are also offered through the Transit
Project’s source forge site.

• Screenshot Manager: The screenshot manager allows the postage of

project screenshots in a standardized image with preset dimensions and
file format, ensuring view ability by all the community’s members. A
series of screenshots of the Transit Suspend/Resume GUI together with
Sample Application Screenshots is present on the Transit Sourceforge site.

• Forums, Mailing Lists & News: These tools further enhance
communication between the community and the project administrator,
thus allowing the overall improvement and expansion of the project.

A Meta Model For Long Lived Transactions

 Page 116 of 175

7.4 Transit Model Solution Assumptions and Limitations

The following list contains all the assumptions which have been made throughout
the development of this project, together with project limitations which are
present in the current implementation:

• An important goal of this project was that of proving an academic
concept, rather than developing an industrial solution.

• While development has been made in .NET technologies, there are no low

level system calls which tie down the logic of the Transit Model Solution
down to .NET. Therefore re-coding in any desired language is possible. It
is considered an advantage if any alternate language in which the project
may be re-coded is based on OOP concepts.

• While this project proves that the application of a workflow control
language in order to handle Long Lived Transactions is simple and
practical, the implementation presented has certain limitations, such as
restricted expression handling (expression handling is restricted only to +
and – operators), or the inability for a segment to operate in a recursive
manner. While all the basic functionality is operational, the scripting
language may be extended to infinity, since there is no limit to the
amount of functionality that may be added.

• The main limitation in this solution is that transaction contexts were not
completely handled. In fact, a lower level accompanying layer such as
Microsoft’s System.Transactions Library, or JTA in case of a Java engine
would be needed for complete transaction context handling and
propagation. In this solution, a transaction context has been assumed to
be the set of states of the transactions composing an LLT. While in this
case, the context is shared, a specific value can’t be propagated.

• It has been assumed that the reader possesses development knowledge,
and that anyone who applies this system in a project is familiar to XML
Scripting techniques.

• The main goal of this project was to prove the scripting language and
workflows concepts’ applicability to LLT processing, thus the main effort
was concentrated on developing a centralized robust language and
processor without catering for a distributed environment.

A Meta Model For Long Lived Transactions

 Page 117 of 175

7.5 Evaluation

If one takes into account the Transit Model Solution as it has been implemented
in this thesis, the following main features may be outlined:

• It offers a powerful and simple scripting language which allows the
definition of multiple transaction models.

• The main power in the language lies in its highly standardized XML
conformant syntax, and in its simplicity. When the developer is faced with
the choice of a model as discussed in the previous chapters, there is no
need of having expert knowledge in the transaction management field, as
the script consists of a rather simple workflow description which may be
understood by anyone with basic imperative language programming
knowledge.

• Since the scripting language is standardized to conform to W3C XML
standards, if developers adopt the language to define existing and custom
models as a default choice, the language itself may be a good candidate
for becoming a common well known standard, possibly used in all
transaction management systems to define the models.

• Being open source, as developers create more and more models using the
scripting language, there will be a pool of readily available transaction
models, which may be simply downloaded and plugged into the Transit
Model Solution, or custom solutions which use the same Transit Script
Standards.

• Should the case arise where a developer must code a custom transaction

model, there is still no need of expert transactional knowledge, but just
the understanding of simple workflow concepts. The language in itself
has been specially designed using conventional language constructs to
make it learnable literally within minutes.

• The solution thus successfully abstracts the developer from excess
transactional details which may consume time and resources.

• The accompanying transaction model API also offers various advanced

transaction handling techniques such as suspension or resumption of a
long lived transaction, while persisting it to disk. Thus while this
implementation simply serves to prove the meta-model concept, it also
explores advanced transaction handling features.

A Meta Model For Long Lived Transactions

 Page 118 of 175

It can be concluded that these features are more than enough to resolve the
initially discussed problems present in current solutions, since they fulfill all the
desirable features which a typical transaction model and transaction
management system should contain. In essence, all problems, current system
drawbacks, and desirable features discussed in the first three chapters of this
thesis have been fulfilled by the Transit Model Solution.

7.6 Future Work

While all the core logic for a stable solution has been included in this dissertation,
and the accompanying implementation, there are various desirable features
which may be considered for inclusion in future versions of the implementation.
These include the following:

• Distribution of business logic into a fully fletched middleware Transaction
Processing system. This would include the addition of the TransitModel
API to a middleware server, rather than a top level application. Typically,
objects would be passed over XML or soap to the server, processed, and
returned to the requesting application.

• Full expression evaluation features, including all operators, not just + and
- operators.

• Re-coding into a multi platform programming Language.

• Extension of the programming language to include better constructs,
possibly not by extending the coordinator and language blocks engine, but
by creating new constructs based on XML itself. An initial attempt has
been made, with the implementation of try … catch, commitAll, and
compensateAll constructs, which has been successful. Further extension
of the language is desirable, as long as functionality is increased.

• Analyse feedback from the open source community, and improve the

system according to that feedback. As previously stated, the project has
successfully been posted to www.sourceforge.net, thus giving it a major
exposure to the open source community.

7.7 Final Remarks

From the testing carried out (see appendices), it can be concluded that the
Transit Model API provides a stable and easily integratable solution for handling
various types of Long Running Transactions, through the introduction of a series

A Meta Model For Long Lived Transactions

 Page 119 of 175

of both novel concepts and concepts which have been based on the positive
features of current transaction model theory, and solutions. The main sources of
inspiration for this thesis included ConTract Models, which introduce the notion
of scripts for transaction processing, Arjuna’s WS-CAF project, which has
workflow based architecture, and Bell Lab’s Cova TM, which is also a script based
transaction management system. The main inspiration for theoretical research
has been Marek Prochazka’s PHD thesis on Long lived transactions, which
contained invaluable information regarding currently available transaction model
specifications.

The original scope of this thesis was that of the creation of a Meta Model,
allowing developers with scarce transactional knowledge to easily express their
own transaction models, or use ready made model templates. This scope has
been reached with the development of the Transit scripting language, and the
accompanying API, which proves the practical nature of the Language. At
present, the project has been reviewed by source forge technical staff, and
successfully approved for registration as a www.sourceforge.net open source
project under an academic free licence. This effort has been undertaken in order
to expose the project to the open source community, and get relevant feedback
regarding ways in which the solution can be improved. The source forge
application and approval forms may be viewed in the appendices section. The
project material is available for viewing on the source forge site, at the URL’s:

http://www.sourceforge.net/projects/transitmodel

or

http://transitmodel.sourceforge.net/.

While the features mentioned in the future work may be desirable, they are
considered as extras, which only enhance the functionality of the core logic
which has already been defined in this thesis. Various references have been
used, since the nature of this project had a strict emphasis on heavy research,
and logical design, rather than development capabilities. A list of these may also
be found in the appendices section.

The appendices section also contains information about correspondence carried
out throughout the project, practical examples, and a full listing of class
diagrams which represent the classes contained in the TransitModel namespace.

A Meta Model For Long Lived Transactions

 Page 120 of 175

Appendix A: Glossary

When one comes to contact with the world of transactions, a set of dedicated
technical terms is noticed, some of which are fundamental for the
comprehension of the concepts of transactions itself. This syntax is particularly
used in the definition of software solutions for transactions, and thus it is
mandatory that the reader has good knowledge of it, in order to fully understand
this project. In aid of this cause, the most commonly used technical terms which
are needed to grasp transaction concepts are listed and explained below:

[A] ACID Properties

When a transaction manifests ACID properties, it means that it is atomic
in nature where ACID stands for Atomicity, Consistency, Isolation and
Durability.

[B] Activities

An activity may be considered as building block, at the lowest level of
granularity in the Transit Model Solution, a series of which makes up a
Long Lived Transaction. From a theoretical point of view, activities may
range from a strict ACID transaction, to a more complex transaction,
based on the developer’s choice.

[C] Atomic & Compound (aka Long Lived, Long Running)

Transactions

This term is explained in detail above in the previous pages, however in
essence, atomic transactions are those which have a compact, “yes or no”
nature, while Compound transactions include complexities such as
compensation and rollback over extended time. Typical a long lived
transaction is made up of multiple ACID transactions.

A Meta Model For Long Lived Transactions

 Page 121 of 175

[D] B2B & B2C Transactions

B2B refers to any transactions occurring between businesses, while B2C
refer to transactions which typically occur between a business and a
Consumer. The latter is typically of an atomic nature.

[E] Commit & Abort Concepts

The commit and abort concepts in a transaction are simply the
occurrences of a successful transaction in the case of commit, which
means the transaction would have been confirmed, and the occurrence of
a transaction failure in case of an abort.

[F] Long Lived Transactions (LLT’s)

Long lived transactions, as previously stated in the generic description, are
compound transactions made up from smaller building blocks, also known
as activities. This is the context applied in the solution of this thesis. A
Long Lived transaction may commit, abort, or get suspended and
resumed.

[G] Rollback & Compensation/Recovery Concepts

Rollback and compensation are two concepts which are present only in
long running transactions, where rollback refers to the point in time where
one Unit of Work of the transaction fails, and thus the system has to
reverse any actions which had been taken. Taking a bank transfer as an
example, money would have to be sent back to the original account.
Compensation on the other hand refers to the activity of finding an
alternative solution to the failed Unit of Work. Referring again to the bank
transfer situation, compensation in this case may be finding an alternative
account of the same destination customer, and transferring the cash to it.

[H] Suspension/Resumption

Suspension and Resumption are to concepts present in the Transit Model
Solution which allow the halting of the processing of a transaction mid-
way, switching off of the application, re-switching on at a later time, and
resumption of the halted transaction process.

A Meta Model For Long Lived Transactions

 Page 122 of 175

[I] Transaction Model

A transaction model is a template to which the behavior of a particular
transaction can be compared, thus determining whether the transaction in
question falls under the model’s category. There exists no standard set of
models, especially in the case of long lived transactions, as one model is
typically good for just one or a small range of similar transactional
applications, thus anyone may define a new transaction model at any
time. This may have negative effects by creating confusion and an
environment of non standardization in the transaction processing realm,
where nobody knows which model is best for what particular practical
application.

[J] Transaction Processing System/Framework/Service

These terms simply refer to the existent software applications which in
one way or anther handle transactions of any type and process them. In
many cases, a specification of a service/framework/system is found to be
available, without the actual system having been yet implemented. These
systems are usually based on one or more transaction model.

[K] Transaction States

Transaction states are a series of conditions to which an activity in a long
lived transaction conforms, after a particular execution procedure. For
example, if an activity, executes, it will typically switch from an “idle”
state, into a “committed” state.

[L] Transit Model API

The Transit model API is the part of the Transit Model Solution which has
been developed using Microsoft’s Visual C#, and .NET 1.1 Technology,
with the sole purpose of providing a parser, interpreter and execution
framework for Long Lived Transactions

[M] Transit Model Solution

The term “Transit Model Solution” refers to nothing less than the software
solution proposed in this dissertation. This includes an XML based
scripting language with specially developed syntax, an API which parses

A Meta Model For Long Lived Transactions

 Page 123 of 175

and processes workflows containing long lived transactions, and allows for
the persistence of these workflows to disk.

[N] Transit Scripting Language

This term refers to the XML based custom scripting language which has
been conceptualized and specially developed in order to handle Long
Lived Transactions. The language is considered as one of the core parts
of this thesis, and has the main scope of providing a meta–model with
which transaction models may be defined in an easy and concise manner.
The script has been based on workflows constructed using classic
imperative programming language constructs.

[O] Unit of Work

A Unit of Work represents a single business process, which may be both
transactional or non transactional, which typically makes part of a long
lived transaction. If a transactional Unit of Work fails, a rollback operation
takes place. This may be followed by a compensation operation,
depending on the transaction model which is being used.

A Meta Model For Long Lived Transactions

 Page 124 of 175

Appendix B: Class Diagram Listing

Figure B1 TransitModel.Structure Class Diagram

The above diagrams represent the TransitModel.Structure namespace, which
provides the activity class, from which a developer can extend, and the LLT
class, which the developer can instantiate, in order to create an LLT object,
composed from Activity objects, which is then processed by the TManager
component. For more information read dissertation’s chapter 6.

On the other hand, the diagram on the next page represents the architecture
mentioned in the dissertation, which enables the parsing and execution of the
Long lived transaction passed by an end user, according to a loaded Transit
Script. One can see the language blocks for each statement, some of which
extend from the IBlock interface, which provides execution method definitions
and parameter passing and variable declaration utilities.

A Meta Model For Long Lived Transactions

 Page 125 of 175

A Meta Model For Long Lived Transactions

 Page 126 of 175

Figures B2 & B3 TransitModel.TManager Class Diagrams

Finally, this third batch of diagrams represents the TManager namespace, which
contains the Coordinator class, the Manager class, the Transit Resume GUI, and
a simple logger, which is used by the GUI. This set of classes amalgamates the
whole solution, since the developer may call only methods from the MGR class,
and may only get an instance reference of the GUI, for resumption purposes. All
classes are singleton, since only one instance of each class is needed per
application.

A Meta Model For Long Lived Transactions

 Page 127 of 175

Appendix C: Transit Script Examples

The following xml based scripts represent two of the three transaction models
present in the implementation on the accompanying disk. The Nested model has
been already included in this dissertation in chapter five. While section A
contains the Transit version of the JSR 95 LLT model as implemented by Ixaris, a
custom SAGA based model is presented in section B. This makes use of custom
try catch constructs defined in XML syntax, together with extensive use of N
based expressions. These scripts were build using a typical XML editor
application, such as Altova’s XML Spy, which allows on the fly XML validation.

A.) JSR 95 LLT Transaction Model (Ixaris Implementation)

<?xml version="1.0" encoding="utf-8" ?>

<model>
 <name>LLT Model</name>

 <decl>
 <activityList size = "*n*">
 arrayOfActivities
 </activityList>
 </decl>

 <workflow>
 <segment id = "Start">
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 <fordo begin = "paramone"

end = "paramtwo"
counter = "k"
step = "++">

 <execute position = "k" type = "commit">
 arrayOfActivities
 </execute>

 <ifthen index = "k" result = "rolledback" type ="normal">

A Meta Model For Long Lived Transactions

 Page 128 of 175

 <goto paramone = "k-1" paramtwo = "0">
CompensateAll

</goto>
 <cmd>exitscript</cmd>
 </ifthen>
 </fordo>
 </begin>
 </segment>

 <segment id = "CompensateAll">
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 <fordo begin = "paramone"

end = "paramtwo"
counter = "k"
step = "--">

 <execute position = "k" type = "compensate">
 arrayOfActivities
 </execute>
 </fordo>
 </begin>
 </segment>
 </workflow>

 <main>
 <goto paramone = "0" paramtwo = "*n*">Start</goto>
 </main>
</model>

Figure CA1 JSR 95 LLT Transaction Model

B.) A Custom SAGA Model

<?xml version="1.0" encoding="utf-8" ?>

<model>
 <name>TryCatch Saga</name>

 <decl>
 <activityList size = "*n*">
 arrayOfActivities
 </activityList>
 </decl>

A Meta Model For Long Lived Transactions

 Page 129 of 175

 <workflow>
 <segment id = "Try">
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 <fordo begin = "*n*-*n*"

end = "*n*-(*n*-1)"
counter = "k"
step = "++">

 <execute position = "k" type = "complete">
 arrayOfActivities
 </execute>

 <ifthen index = "k" result = "rolledback" type ="normal">
 <goto param1 = "k-1" param2 = "*n*-*n*">

Catch
</goto>

 <cmd>exitscript</cmd>
 </ifthen>
 </fordo>
 <ifthen type = "expression"

expression1 = "k"
operator = "=="
expression2 = "*n*-(*n*-1)">

 <fordo begin = "*n*-*n*"

end = "*n*"
counter = "k"
step = "++">

 <execute position = "k" type = "commit">
 arrayOfActivities
 </execute>
 <ifthen index = "k"

result = "rolledback"
type ="normal">

 <goto param1 = "k-1"

param2 = "*n*-*n*">

Finally
</goto>

 <cmd>exitscript</cmd>
 </ifthen>
 </fordo>
 </ifthen>
 </begin>
 </segment>

 <segment id = "Catch">

A Meta Model For Long Lived Transactions

 Page 130 of 175

 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 <fordo begin = "param1"

end = "param2"
counter = "k"
step = "--">

 <execute position = "k" type = "rollback">
 arrayOfActivities
 </execute>
 </fordo>
 </begin>
 </segment>

 <segment id = "Finally">
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 <fordo begin = "param1"

end = "param2"
counter = "k"
step = "--">

 <execute position = "k" type = "compensate">
 arrayOfActivities
 </execute>
 </fordo>
 </begin>
 </segment>
 </workflow>

 <main>
 <goto>Try</goto>
 </main>
</model>

Figure CB1 Custom Try Catch Saga

A Meta Model For Long Lived Transactions

 Page 131 of 175

Appendix D: Transit API Usage Instructions

This appendix provides a complete list of utilities externally available to the
developer present in the Transit Model API:

• Classes:

TransitModel.Structure.Activity – Class which provides standard structuring
for an activity. Developers must extend from it to create activities for their
applications.

TransitModel.Structure.LLT – Class which provides structuring for a Long
Running Transaction. Developers must instantiate it and add an array list of
activities to it, thus having created an LLT Object.

• Utilities:

TransitModel.TManager.Logic.Mgr.getMgrInstance() – Method which
returns a pointer to a singleton instance of the transaction manager.

TransitModel.TManager.Logic.Mgr.brandNewLLT(LLT object) – This
method may be used to “post” the LLT object created in the application to the
transaction manager.

TransitModel.TManager.Logic.Mgr.runLLT() – Method which executes the
transaction which has been currently loaded, either brand new, or suspended.

TransitModel.TManager.Logic.Mgr.loadSuspendedLLT() – Method which
loads an LLT Object from disk into the Transaction Manager. While this method
in public, explicit use of it should be avoided as much as possible. LLT
Resumption should be handled through the Transit Model Solution Resume GUI.

TransitModel.TManager.Logic.TransitControlPanel.getGUIInstance() –
Method which returns a pointer to a singleton instance of the Transit Model
Solution’s Resume GUI. This method call includes automated loading of
suspended transactions from disk, without the developer’s intervention.

A Meta Model For Long Lived Transactions

 Page 132 of 175

Appendix E: Example - Transit Enabled version of Skype

A.) Introduction

The following example assumes a particular use case of the popular Voice over
IP software program, Skype. The following implementation extends the Skype
application’s top up process, making it long running. A long running transaction
thus has to be designed, implemented, and passed onto the Transit Model API,
which executes the transaction, returning a positive or negative result to the
Skype Application. While the actual skype implementation is out of the scope of
this thesis, this Appendix covers implementation details of how the developer
should handle integration of the Transit Model API into his application, creation
of the Long Running Transation, execution, and interpretation of the results.
Please note that only the parts relevant to this thesis have been implemented,
and thus the actual implementation of skype and third party server
communication have been simulated.

Figure EA1 Use Case: Transit Enabled Skype E - Top Up

B.) Application Design & Implementation

When one considers the Skype’s utilities, other than the top up process, it is
developed in the typical way any application is developed, consisting of a series
of classes containing data structures and methods. There is no need of radical
structural changes to the design process in order to transit enable an application.

A Meta Model For Long Lived Transactions

 Page 133 of 175

Conforming to the explanation provided in this thesis, the general architecture of
the Transit Enabled version of Skype consists of the following:

Figure EB1 Transit Enabled Skype Top Up Architecture

In this case we are assuming that the top up process for the skype application
consists of three main processes:

• Checking if the top up process is allowed for the particular customer.

• Making a fund transfer request to a third party server

• Remotely updating the Skype Account.

Besides these processes, the application is normally implemented, as if it was not
Transit enabled. The only changes in design needed include the re-coding of the
transaction which tops up the Skype account into a long running transaction,
thus posing minor alterations to the above three processes. This includes the
following three steps:

1. The addition of the Transit Model API into the Project.

2. The Creation of an “Activities” folder and Activity Classes

This folder should contain three classes, one for each activity which is
contained in the long lived transaction. Each of these classes should
extend the Activity abstract class available in the Transit Model API, and
over ride each of its virtual methods. As previously explained, these
methods are crucial for the runtime engine to execute the final
transaction.

A Meta Model For Long Lived Transactions

 Page 134 of 175

Figure EB2 Architectural Changes to an Application

The following code shows the structure of the CheckAllowedTopup Activity
implementing the standard methods which have been overridden from the
Activity class contained in TransitModel.Structure. While other custom methods
may be implemented, it is imperative to implement these methods in the “try”
“catch” format described in the second diagram below. Also note that Activity
classes must be marked as Serializable, to enable persistence to disk.

using TransitModel.Structure;
namespace SkypeTopup.Activities
{
 [Serializable]

public class CheckAllowedTopUp : Activity
 {
 public CheckAllowedTopUp()
 {
 //
 // TODO: Add constructor logic here
 //
 }
 public override void activityRun()
 {
 // TODO: Implement Here
 }

 public override void activityCommit()
 {

API Model Reference
&

Activities Folder

A Meta Model For Long Lived Transactions

 Page 135 of 175

// TODO: Implement Here
 }

 public override void activityRollBack()
 {

// TODO: Implement Here
 }

 public override void activityCompensate()
 {

// TODO: Implement Here
 }

 public override void activityResumeRun(object obj)
 {
 // TODO: Implement Here
 }

 public override void activityResumeCommit(object obj)
 {
 // TODO: Implement Here
 }

 public override void activityResumeRollBack(object obj)
 {

// TODO: Implement Here
 }

 public override void activityResumeCompensate(object obj)
 {
 // TODO: Implement Here
 }

 }
}

Figure EB3 CheckAllowedTopup Extending from the Activity Class

public override void activityRun()
{

try
 {
 //Carry out remote server request
 //If response is positive

this.setStatusToCompleted(); //Transaction Successful

//Else if response is negative
this.setStatusToRolledBack(); //Transaction Failed

 }
catch

 {
 // If Server connection has been lost

this.setStatusToWaitRun();
 }
}

Figure EB4 CheckAllowedTopup Run Method

A Meta Model For Long Lived Transactions

 Page 136 of 175

3. The Instantiation of the Activities and the LLT Object

The next step includes the instantiation of each class in the Activities
folder, and its inclusion into an LLT Object. In this case, this has been
carried out in the main Windows Form, however there is no restriction on
the developer on the code location, as long as the Activity Objects are
created, and added to an LLT Object. The only requirement needed is the
addition of the TransitModel.Structure namespace to the class in which
the LLT Object is created:

Figure EB5 Adding the TransitModel References

//Construction of the activity structure

Activity checkIfAllowedTopup = new Activities.CheckAllowedTopUp();
checkIfAllowedTopup.Name = "Is Topup Allowed";

Activity getFundsFromVisa = new Activities.GetFundsFromVisa();
getFundsFromVisa.Name = "Get Funds From Visa";

Activity updateSkypeAccount = new Activities.UpdateSkypeAccount();
updateSkypeAccount.Name = "Update Skype Account";

//Copy everything into an ArrayList

A Meta Model For Long Lived Transactions

 Page 137 of 175

ArrayList activityList = new ArrayList();
activityList.Add(checkIfAllowedTopup);
activityList.Add(getFundsFromVisa);
activityList.Add(updateSkypeAccount);

//Create an LLT

LLT topupTransaction = new LLT(activityList);

Figure EB6 Creating the Long Running Transaction

At this point, all the alterations needed to the architecture of the application itself
have been completed. We now have a new transaction which may be passed
onto the transaction manager and executed. Let us now consider the previous
use case diagram. In order to transit enable an application, two extra functions
are typically added:

• A function to execute a new Transaction, in this case “Buy Credit”,
represented as a clickable button in the Skype Top up Manager GUI.

• A function to check the progress of an already initiated Long Running
Transaction, in this case represented by the “Progress” button in the
Skype Top up Manager GUI.

Both these functions are handled using the transaction manager provided in the
Transit Model Solution’s TManager Namespace.

C.) Transaction Management

The transaction manager provides a series of methods which enable transaction
execution, suspension, resumption, and log viewing (see previous appendix for
complete list of utilities of the Transit Model API). However, in order to obtain
access to these utilities, the following simple steps are initially followed:

• The addition of a reference to the TransitModel.TManager namespace. (in
this case, to the Skype Topup Manager class)

• The creation of a pointer to the Manager’s singleton instance:

Mgr tmanager = Mgr.getMgrInstance();

Once a reference to the transaction manager instance has been acquired, the
developer has access to all its methods. In this case, we want to either post a
brand new transaction to the transaction manager and execute it, or view the
progress of a running transaction. Consider each possibility:

A Meta Model For Long Lived Transactions

 Page 138 of 175

• Running a new Transaction

Due to the architectural changes previously carried out, it is now a trivial task
to execute a new transaction. The process includes the following two steps:

o Call the Transaction manager’s “brandNewLLT” method, in order to

post the previously constructed LLT object to the manager as a
new transaction.

o Call the Transaction manager’s “runLLT” method, which initiates

execution.

Figure EC1 Running the Transaction

Since this process may take a lengthy amount of time, it is ideally implemented
on a separate thread. It results in a series of changes in states of the Activities
contained in the LLT object, which may be then interpreted by the Skype Top Up
Manager class in order to inform the end user of the current state of the
transaction. If any of the Activities in the LLT object is set to a wait mode, the
transaction is not yet completed, and may be resumed through the second
function which enables to view the progress of a transaction, and resume it if
needed.

In this case, we have chosen to graphically represent the progress of a
transaction in the Skype application, by implementing a colour coded progress
indicator which gives indications about the transaction’s progress in real time.
However this is not part of the transit model solution, but rather a real time
graphical interpretation of the execution progress of the Transit Model Solution’s
transaction manager engine. Sample screenshots can be viewed in section E.

A Meta Model For Long Lived Transactions

 Page 139 of 175

• Viewing Transaction Progress/Resuming a Transaction.

While actual transaction progress has been catered for through visual
illustrations in the Skype Top Up Manager, resumption of a transaction must be
handled through the specialized GUI provided in the Transit Model Solution. The
skype application developer can handle the situation by simply creating an
instance of the GUI, upon suspension of a transaction, or upon a user request
through a button click. In this example, it has been decided to trigger off
instantiation of the Transit GUI thorough the “Progress” button, which is present
in the Skype Topup Manager. Upon click of the Progress button, the following
process takes place:

o A Transit reference to the TransitControlPanel Singleton Instance is
obtained.

o The show() method is called, in order to display the Transit GUI

which then handles resumption.

Figure EC2 Instantiating the Transit Resume GUI

This results in the instantiation of the transit control panel:

A Meta Model For Long Lived Transactions

 Page 140 of 175

Figure EC3 The Transit Model Resume GUI Instance

At this point, the implementation per se is complete, when considering it from a
transaction handling perspective. We thus have a working Transit Enabled
Topup Process, which simulates Skype’s Top Up process if it had to be run as a
long running transaction.

One may notice that up till now, the developer has absolutely not catered for
transaction coordination, inter dependencies, and execution sequences. He has
merely put a series of activities into an Array List, and LLT Object, and passed
them to the Transit Transaction Manager for handling. This outlines the success
of the Transit Model solution in the “abstraction of transactional complexities”
context.

The only drawback presented in this system is that the developer must pay
attention to the sequence in which he constructs the array list of activities, since
this directly effects the execution process. Transit Scripts are based on the idea
of executing a workflow which defines an execution sequence based on the
arraylist positions of a set of activities. As explained in the thesis, these arraylist
positions act as “place holders” into which activities are plugged by the
developer. Thus the developer must be sure to have plugged the correct activity
in the right position, according to the script he is using; otherwise, erroneous
execution would occur.

A Meta Model For Long Lived Transactions

 Page 141 of 175

D.) Choosing a Model

The choice of a model largely depends on the choice of the developer. This
particular application has been developed for demonstrative purposes, and has
been made to be compatible with all three sample scripts provided with this
thesis. In order to enable an application to run on a particular script, upon
compilation, a script file must be copied to the application’s /Logic/Model
directory;

Figure ED1 Choosing a Script for the Skype Topup Application

If the script file is changed, the application (Skype) will successfully run on the
new model provided it has complatible logic. This would however mean that the
application needs to be re-started, and any pending transactions will be wiped
out.

E.) The Result

The following series of screenshots provide a walkthrough of the execution of the
Top Up Process for the Transit Enabled Skype Top Up Facility using the LLT
Model proposed by Sun’s JSR 95. The source code and executables of this
example can be found on the compact disk accompanying this thesis:

A Meta Model For Long Lived Transactions

 Page 142 of 175

Figure EE1 Transit Enabled Skype Top Up Main Form

This is the initial menu of the Skype program. Note the “Top Up Your SkypeOut
Button”. When this button is clicked, the following screen pops up:

Figure EE2 Skype Top Up Manager Form - Idle

A Meta Model For Long Lived Transactions

 Page 143 of 175

Figure EE3 Skype Top Up Form – New Transaction Started

In the above diagram, the Buy credit has been clicked, and the execution
process starts. In the one below, the Transaction got suspended due to third
party server connection loss. The user then clicked the Progress button, thus
displaying the Transit Resume GUI:

Figure EE4 Skype Top Up Form – Suspended + Transit Resume GUI

A Meta Model For Long Lived Transactions

 Page 144 of 175

While the transaction is in wait mode, detailed execution logs may be viewed in
the Transit Control Panel’s Logging facility:

Figure EE5 Skype Top Up Form – Resumed/Running

Figure EE6 Skype Top Up Form – Resumed/Running

At this point, the transaction has been resumed through the Transit GUI. The
first activity has committed, while the second activity has completed.

A Meta Model For Long Lived Transactions

 Page 145 of 175

Figure EE7 Skype Top Up Form – LLT Committed

Finally, this diagram displays the final result after execution. In this case, all
three activities have successfully committed. Had one activity rolled back,
according to the JSR 95 LLT model which has been used in this case, all previous
activities would have compensated, displaying a gray colouring on the respective
Activity Icons:

Figure EE8 Skype Top Up Form – LLT Compensating

A Meta Model For Long Lived Transactions

 Page 146 of 175

Appendix F: Example - Transit Enabled Holiday Planner

The Holiday Planner Application represents a typical holiday booking system
which allows customers to book flight tickets, hotel reservations, and train tickets
for their holiday trips. The main goal of this application is to demonstrate the
wide range of applications to which the Transit Model Solution may be applied.
While the application architecture is unique, the transaction management
architecture is identical to the Skype E-Topup Facility. It has thus been deemed
non practical to repeat the illustration of the architecture, since once can refer to
the previous appendix for technical details. The following screenshots illustrate
the operation of the application:

Figure F1 Holiday Planner Form – LLT Model

A Meta Model For Long Lived Transactions

 Page 147 of 175

Figure F2 Holiday Planner Form 2 – LLT Model

A Meta Model For Long Lived Transactions

 Page 148 of 175

Appendix G: Transit API Testing

The main idea of testing is to ensure that the quality of the software application
is up to standard, and thus the this test plan has been set up in order to aid the
developer to make sure that this goal is reached. The first type of testing to be
carried out will be that of white box testing on the most important modules using
the code walkthrough method.

Upon successful completion of white box testing, black box testing will be
undertaken, this time through the use of an external application; the Transit
Enabled Skype E - Top Up facility.

A.) White Box Testing

Test 1: Code Walkthrough: Model Object Creation

Test Rig

The rig for this particular test consists of the code trace through
the process of loading a transaction model from the script file into
the transaction model, parsing using the coordinator class, and
merging the loaded model to an example LLT in order to create a
Model Object.

Test Data

For this particular test, the script file containing the SAGA model
(included on compact disk /Executables/Transaction Model
Examples/TryCatchSaga.xml) will be used.

With regards to the LLT Object, the structure used will be the one
described in appendix E, consisting of the three activities making
up the Skype Top Up long running transaction :

• Checking if the top up process is allowed for the particular
customer.

• Making a fund transfer request to a third party server

A Meta Model For Long Lived Transactions

 Page 149 of 175

• Remotely updating the Skype Account.

Expected
Results

Since the file has been tested through Altova’s XML validation
software, it is known that the XML file is syntactically correct.

The LLT is also programmatically correct, and compatible with the
model’s logic.

Since all the test data is correct, a positive result is expected,
where the Model Object is successfully created.

Actual
Results

The test was carried out using the test data described, and the
result was the successful creation of the Model Object. No
compromising bugs were detecting during the tracing of the code.

Outcome

This test proves that the the following classes or methods are
operating as expected:

• TransitModel.TManager.Logic.Coordinator

• TransitModel.TManager.Logic.Mgr.brandNewLLT();
• TransitModel.TManager.Logic.Mgr.getMgrInstance();
• TransitModel.TManager.Logic.Mgr.abortSuspendedLLT();

It also proves that all data structures involved in this process,
mainly the LanguageBlock Classes, are all operating correctly.

Test 2: Code Walkthrough: Model Object Execution: Normal

Test Rig

The rig for this particular test consists of the code trace through
the process of executing the Model Object in a case where all the
activities commit. The data rig used is identical to the one in the
previous test.

Test Data

For this particular test, the script file containing the SAGA model
(included on compact disk /Executables/Transaction Model
Examples/TryCatchSaga.xml) will also be used.

With regards to the LLT Object, the structure used will also be the

A Meta Model For Long Lived Transactions

 Page 150 of 175

one described in appendix E, consisting of the three activities
making up the Skype Top Up long running transaction :

• Checking if the top up process is allowed for the particular
customer.

• Making a fund transfer request to a third party server

• Remotely updating the Skype Account.

Expected
Results

This test should result in the complete execution of the
transaction, without any persistence to disk. The Boolean value
indicating suspension of a transaction found in the execute();
method of the “Execute” language block should be set to false
throughout the process.

Actual
Results

Execution proceeded, and concluded successfully, with the
commission of all activities. The execute language block did not
switch to suspend mode, since the Boolean value indicator was set
to false throughout the process.

Outcome

This test can be considered as successful. The execute() in the
Execute Language Block can be considered to be functioning as
expected, with regards to normal execution.

Test 3: Code Walkthrough: Model Object Execution: Suspend

Test Rig

The rig for this particular test consists of the code trace through
the process of executing the Model Object in a case where the
long running transaction gets suspended in its last activity (update
skype account). The data rig used is identical to the one in the
previous test.

Test Data

For this particular test, the script file containing the SAGA model
(included on compact disk /Executables/Transaction Model
Examples/TryCatchSaga.xml) will also be used.

With regards to the LLT Object, the structure used will also be the
one described in appendix E, consisting of the three activities

A Meta Model For Long Lived Transactions

 Page 151 of 175

making up the Skype Top Up long running .

Expected
Results

While the SAGA model is still correct, this time, a connection loss
is simulated in the “update skype account” activity, which happens
to be the last activity to be executed in the Skype Top Up Long
Running Transaction. The connection loss is simulated by
throwing an exception when the activity tries to commit:

public override void activityCommit()
 {
 try
 {
 //Simulate Work on Remote Server
 Thread.Sleep(1500);

 //Simulate Connection Loss
 throw new Exception();
 …
 …
 }
 catch
 {
 this.setStatusToWaitCommit();
 }

Figure GA1 Connection Error Simulation

This should trigger off a transaction suspension mechanism which
switches the boolean value indicator in the Excecute language
block to true, thus indicating a suspension. The activity should
also change to waitCommit. This should subsequently trigger off
serialization of the entire Model object to disk, halting of
execution, and wiping of the transaction information from
memory.

Actual
Results

Execution proceeded normally until the simulated connection loss.
The activity switched state successfully, and the execute();
method in the Execute Language Block also executed serialization
of the Model Object Successfully. The boolean indicator switched
to true before serialization occurred, thus indicating the presence
of a suspended transaction.

Outcome

This test can be considered successful, since the actual results
equaled the expected results in a satisfactory manner.
Serialization to disk works well, and all the necessary parameters

A Meta Model For Long Lived Transactions

 Page 152 of 175

switched to suspended state.

Test 4: Code Walkthrough: Model Object Execution: Resume

Test Rig

The rig for this particular test consists of the code trace through
the process of executing the Model Object in a case where the
long running transaction is resumed from disk, rather then posted
by the end user. The class being tested in this case is the Execute
Lanugage Block, which contains the entire resumption Logic. The
data rig used is identical to the one in the previous test.

Test Data

For this particular test, the script file containing the SAGA model
(included on compact disk /Executables/Transaction Model
Examples/TryCatchSaga.xml) will also be used.

With regards to the LLT Object, the structure used will also be the
one described in appendix E, consisting of the three activities
making up the Skype Top Up long running .

Expected
Results

The most relevant results to be observed in this case are the
correct de-serialization of the Model Object from disk, the correct
simulation of execution of activities which have already been run,
and the switching from simulation mode to normal execution, as
soon as the point where the transaction was suspended is
reached. The execution of the resume method in the activity is
also to be observed.

Actual
Results

The code trace initially started with the successful de-serialization
of the Model from disk and proceeded with the simulated
execution of the already executed activities. As soon as the
simulation arrived to the third activity’s commit step, the wait
state was identified, and the resume method was called.

This executed successfully, and was followed by the switch from
simulation resume mode to normal mode. This resulted in the
third activity being committed, and the overall Transaction being
committed.

A Meta Model For Long Lived Transactions

 Page 153 of 175

Outcome

The seamless transition between the simulated execution and the
normal execution of the transaction makes this test a successful
one.

B.) Black Box Testing

Test List: Exhaustive Testing

Test Rig

Black box testing on the Transit Model API was carried out in by
exploiting the Skype Top Up Application in order to create a series
of scenarios which exhaustively cover every possible execution
outcome of a transaction, using different models transaction
models. All the tests have been included on the compact disc
accompanying this thesis, and can be found in the
/Executables/Application Examples directory. The tests are listed
below, together with the scenario they represent, and the
outcome of each test.

Please note that each test was repeated using a second
application, a Travel Agent Facility, also found on the compact
disc.

Test Name Expected Result Actual Result Outcome

LLT 1 Transaction Commit Match Successful

LLT 2
Activity 1 Suspends,
Then resumes &
Transaction Commit

Match Successful

LLT 3
Activity 3 Rolls Back,
Activities 1 & 2
Compensate.

Match Successful

LLT 4

Activity 3 Rolls Back,
Activities 1 & 2
Compensate,
suspension &
resumption in
compensate.

Match Successful

SAGA 1 Transaction Commit Match Successful

 SAGA 2
Activity 1 Suspends,
Then resumes &

Match Successful

A Meta Model For Long Lived Transactions

 Page 154 of 175

Transaction Commit

SAGA 3
Activity 3 Rolls Back,
Activities 1 & 2
Compensate.

Match Successful

SAGA 4

Activity 3 Rolls Back,
Activities 1 & 2
Compensate,
suspension &
resumption in
compensate.

Match Successful

Nested 1 Transaction Commit Match Successful

Nested 2
Activity 1 Suspends,
Then resumes &
Transaction Commit

Match Successful

A Meta Model For Long Lived Transactions

 Page 155 of 175

Appendix H: Application Requirements & CD Contents

A.) Application Requirements

The minimum hardware requirements for this software to run are tied down to
any system which is capable of running the .NET Framework 1.1. Since the
source accompanying this project has a prototypical nature, no network
connections are required to run the applications present on disc. With regards to
software requirements, below is a summary of the generic software requirements
which the application needs.

• General Framework:

o .Net Framework 1.1 or higher

o The Test Applications need to have a Transit Script in their

/Logic/Model directory.

• Application Installation:

o Windows based OS

o 50 Mb Hard Drive Space (Excluding Prerequisites)

Installation & Execution:

Installation of the software is very simple, it merely involves inserting the
compact disc into the drive and copying the “Executables” Folder onto the
desired location in the hard drive. The folder containing the desired test case
may then be navigated to and opened. To run a test case, simply double click
the executable file in the corresponding folder.

A Meta Model For Long Lived Transactions

 Page 156 of 175

B.) CD-ROM Contents

• Deployment

o Transit Model API Compiled Library
o Transaction Model Examples (Transit Scripts)

1. SAGA Model
2. JSR 95 LLT Model (Based on Ixaris Implementation)
3. Nested Model

• Documentation Files

o Application Documentation
o XML Documentation
o In Line HTML based Documentation

• Prerequisites

o _.NET Framework
o Adobe Reader
o Textpad (for viewing Transaction Models

• Source Code

o Transit Model API Source Code
o Skype E-Top Up Facility Source Code (various test scenarios)
o Holiday Planner Facility Source Code (various test scenarios)
o Transaction Model Examples (Transit Scripts)

1. SAGA Model
2. JSR 95 LLT Model (Based on Ixaris Implementation)
3. Nested Model

• Tests

o Skype E-Top Up Facility Source Code (various test scenarios)
o Holiday Planner Facility Source Code (various test scenarios)
o Transaction Model Examples (Transit Scripts)

1. SAGA Model
2. JSR 95 LLT Model (Based on Ixaris Implementation)
3. Nested Model

A Meta Model For Long Lived Transactions

 Page 157 of 175

Appendix I: SourceForge Details

A.) The SourceForge Application Form:

Figure IA1 The SourceForge Application Form

A Meta Model For Long Lived Transactions

 Page 158 of 175

B.) The SourceForge Approval E-Mail:

Approval Email

If this project were approved today, the following email would have been sent to the

project administrator. (If this project was approved in the past, a different verson of this

text may have been provided; shown is the current version of this text, sent to newly

approved projects.)

Subject: SourceForge.net Project Approved

Your project registration for SourceForge.net has been approved.

Project Information:

Project Descriptive Name: Transit Model
Project Unix Name: transitmodel
CVS Server: cvs.sourceforge.net
Shell Server: shell.sourceforge.net
Web Server: transitmodel.sourceforge.net

Project Administration:

The Project Admin page for your project may be accessed at
https://sourceforge.net/project/admin/?group_id=166712
after logging-in.

Service Availability for New Projects:

The DNS for your project web site may take up to 24 hours to become
active. Until DNS is active for your project, attempts to access
your project web site will result in 404 errors. Once DNS is active,
you will see an empty directory index when accessing your project
web site, until you have placed content in your project web space
(remember: project web space is provided solely for use in storing
project-related information; see the Web section of the Project Admin
page for additional details).

Your access to the project shell and CVS servers (including your
new CVS repository, which has already been initialized and is ready
for your first import) are typically available within four hours
from the time when your project was approved. If after 6 hours
your shell/CVS accounts still do not work, please submit a Support
Request (on the "alexandria" project, see below), so as that we may
look in to the problem.

Site Documentation and Support:

A Meta Model For Long Lived Transactions

 Page 159 of 175

SourceForge.net maintains a large amount of documentation about
the SourceForge.net site and services offered to hosted projects.
This documentation may be accessed using the "Site Docs" link in the
left navbar, or directly at: https://sourceforge.net/docman/?group_id=1

Should you need to contact the SourceForge.net team, we may be reached
by submitting a Support Request at:
https://sourceforge.net/tracker/?func=add&group_id=1&atid=200001

Reminder: Acceptable Use and Project Licensing:

By using the SourceForge.net site, you agree to be bound by the terms
and conditions of the SourceForge.net Terms of Use Agreement.

SourceForge.net provides hosting solely for Open Source software
development projects; if your project is not being released under an
Open Source license, or is not developing software, please contact
the SourceForge.net team immediately for assistance. Questions
regarding acceptable use of the SourceForge.net site and resources
should be directed to the SourceForge.net team by submitting a
Support Request (see above).

Donation System:

SourceForge.net provides a donation system that allows users and
projects to accept donations on an opt-in basis.

You may opt-in your user account to receive donations at:
https://sourceforge.net/my/donate_manage.php

You may opt-in this project to receive donations at:
https://sourceforge.net/project/admin/donations.php?group_id=166712

Documentation on the donation system may be found at:
https://sourceforge.net/docman/display_doc.php?docid=20244&group_id=1

Getting Started:

A significant amount of project service information may be found
on the Project Admin pages for your project, as seen at:
https://sourceforge.net/project/admin/?group_id=166712

The Project Admin page for your project is the best place to start.
Please ensure that you have established a suitable Public Description
for your project, and have categorized your project within the Trove;
both of these operations may be performed using the "Public Info"
section of your Project Admin pages.

Enjoy the system, and please tell others about SourceForge.net. Let us
know
if there is anything we can do to help you (we can always be reached

A Meta Model For Long Lived Transactions

 Page 160 of 175

by submitting a Support Request on the "alexandria" project (see
above)).

- the SourceForge.net crew

C.) The Transit SourceForge Web Site:

Figure IB1 The Transit Project’s Sourceforge Site

Figure IB2 The Transit Project’s Sourceforge Utilities

A Meta Model For Long Lived Transactions

 Page 161 of 175

Appendix J: Bibliography & References

A.) Bibliography & References

[1] A news site about who released what protocol/standard/framework and

when: http://xml.coverpages.org/coordination.html#specs

[2] Mark Little's Personal Blog Site:

http://markclittle.blogspot.com/2004_11_01_markclittle_archive.html

[3] Mark Little's Web Log on Webservices.org:

http://www.webservices.org/ws/content/view/full/52229

[4] Current Standards used by Arjuna Technologies:

http://www.arjuna.com/standards/

[5] Article: Acid is good – Take it in short doses:

http://www.theserverside.com/articles/article.tss?l=AcidShortDoses

[6] Article: Business Transaction Protocols – Transactions for a new age:

http://webservices.sys-con.com/read/39607.htm

[7] Article: An Overview of Support for Extended Transaction Models in J2EE:

http://www.developer.com/java/ent/print.php/1136071

[8] A collection of articles and papers from Arjuna Technologies:

http://www.arjuna.com/library/reading.html

A Meta Model For Long Lived Transactions

 Page 162 of 175

[9] Article: Corba VS SOAP based Webservices:
http://searchwebservices.techtarget.com/ateQuestionNResponse/0,28962
5,sid26_gci930913_tax298966,00.html?bucket=ETA

[10] Article: JTA and JTS:

http://www.developer.com/java/ent/article.php/2224921

[11] Article: A comparison of Many Transaction Frameworks by Mark Little:

http://www.webservices.org/index.php/ws/content/view/full/52213

[12] Framework Specification: JSR109 Web services for J2EE Documentation:

http://jcp.org/en/jsr/detail?id=109

[13] Framework Specification: JSR95 Activity Service Specification:

http://jcp.org/en/jsr/detail?id=095

[14] Framework Specification: Java API for XML Transactions:

http://www.jcp.org/en/jsr/detail?id=156

[15] Framework Specification: WS-CAF :

http://webservices.sys-con.com/read/39936.htm

[16] Framework Specification: WS-Coord :

http://www-128.ibm.com/developerworks/library/specification/ws-tx/

[17] Framework Implementation: Novell Bank:

http://www.novell.com/documentation/extendas50/jbroker/tm/examples/
docs/resBank-1.htm

[18] Framework Implementation: WS-AT standards for IBM's Websphere:

http://www.alphaworks.ibm.com/tech/wsat

[19] Framework Implementation: HP Arjuna JSR95 Transaction Service for

JBOSS:

A Meta Model For Long Lived Transactions

 Page 163 of 175

http://www.arjuna.com/products/arjunats/

[20] Transaction Models: Two Phase Commit Model:

http://www.jguru.com/faq/view.jsp?EID=20929

[21] Transaction Models: ACTA Model:

http://swig.stanford.edu/pub/summaries/database/acta.html

[22] Transaction Models: Split/Join Model:

http://www2.parc.com/csl/groups/sda/projects/reflection96/docs/barga/re
flect/node10.html

[23] Open Source: Rules for open source development:

http://www.advogato.org/article/395.html

[24] Open Source: The Free Software Definition:

http://www.gnu.org/philosophy/free-sw.html

[25] Open Source: OSI:

http://www.opensource.org/

[26] Xml Syntax Revision:

http://www.w3schools.com/xml/default.asp

[27] OCCAM Syntax Revision:

http://www.wotug.org/occam/

[28] The Code Project:

http://www.codeproject.com/

[29] C# Corner:

http://www.csharp-corner.com/

A Meta Model For Long Lived Transactions

 Page 164 of 175

[30] Dot Net 247:

http://www.dotnet247.com/

[31] Source Forge:

http://www.sourceforge.net/

[32] Generic definition of Transactions (Microsoft - Msdn)

[33] Container Interposed Transactions (Marek Prochazka & Frantisek Plasil)

[34] Jironde: A Flexible Framework for Making Components Transactional

(Marek Prochazka)

[35] The Contract Model (Helmut Wachter & Andreas Reuter)

[36] The ACID Model – www.about.com (Mike Chapple)

[37] CovaTM: A Transaction Model for Cooperative Transactions (Jinlei Jiang,

Guangxin Yang for Bell Labs)

[38] Advanced Transactions in Enterprise Java Beans (Marek Prochazka)

[39] A Practical and Modular Method to Implement Extended Transaction

Models (Roger Barga & Calton Pu)

[40] Recovery for extended transaction models (Roger Barga)

[41] Using Constraints to manage long duration transactions in spatial

information systems (Kerry Taylor & Dean Kuo)

A Meta Model For Long Lived Transactions

 Page 165 of 175

[42] Long Lived Transactions in a Loosely coupled Environment (John
McDowall)

[43] Recovery in Long Lived and Distributed Transaction Models (M.M. Gore)

[44] An Open Standards approach to web services business transactions (Mark

Little)

[45] Web Services Transaction Management (Michael Felderer)

[46] Towards a framework which captures the requirements of real workflows

(Dean Kuo)

[47] Acta: The Acta Framework Model (Chrysanthis & Ramamritham)

[48] An Extensible Approach to realizing Extended Transaction Models (Eman

Anwar)

[49] Advanced Transactions in Component Based Software Architectures (PHD

Project by Marek Prochazka)

[50] Extendible Long Lived Transaction Processing on Distributed and Mobile

Environments with recovery guarantees (PHD Project by MM Gore)

[51] C# Core Language – Little Black Book (Bill Wagner)

[52] Programming in C# (Jesse Liberty)

[53] Software Engineering - A Programming Approach (Douglas Bell)

[54] Testing Applications on the Web (Bob Johnson, Michael Hackett, Hung Q.

Nguyen)

A Meta Model For Long Lived Transactions

 Page 166 of 175

B.) Correspondence

Mr. Patrick Abela :

Project Supervisor, Developer of Long Lived Transaction Framework for Ixaris
(Malta) Ltd.

Contact: patrick.abela@ixaris.com

Dr. Marek Prochazka :

Developer of Bourgogne Transactions, Charles University, Czech Republic.

Contact: marekproc@yahoo.co.uk

Mr. Mark Little – Arjuna Technologies

Chief Architect in the WS-CAF Long Lived Transaction Handling Specification

Contact: mark.little@arjuna.com

Mr. Michael Usatchev – Computer Science Academy of Moscow

Developer at the Department of Informatics of the Russian Federation - Moscow

Contact: misha@nw.mos.ru

A Meta Model For Long Lived Transactions

 Page 167 of 175

Appendix K: Correspondence

A.) Michael Usatchev – Moscow Computer Science Academy

Subject: RE: Justin Spiteri - Dissertation
From: Michael Usatchev <misha@nw.mos.ru>
Date: Tue, 02 May 2006 18:40:45 +0200
To: Justin Spiteri <justins@waldonet.net.mt>

In the given work the author investigates processes that run in systems driven by transactions.
(transaction enabled applications). General attention is paid to multi-step compound transactions
in complex systems that involve objects with long(-time) life-cycles. In this work the author tries to
prove propriety of application of some theoretical research and suggests a unique solution as a
simple and flexible mechanism backed by modern theoretical principals and aimed to ease up
complexity of transaction management.

In as much as the project does not make its aim to be a commercial solution, such parts as
marketing research or investment return evaluation in this project are not presented.

In chapters 1, 2, which I can regard as the common part, the author immerses into the theory and
covers general terms and issues concerning application of transaction management approaches.
He also shows in detail all existing disadvantages of the traditional models and provides an
illustrative real-world example as evidence. Such models as ACID, ACTA, BTP, WS, and many
others are completely analyzed to detect drawbacks. After that in his conclusion the author insists
on the only solution that is a combination of several models in one meta-model what will provide
flexible manipulation and eliminate complicity in long live transaction management.

In the third chapter mode deeply describes the meta-model that he created. The material is
elaborated from general ideas to concrete requirements and specifications. The text is well
illustrated by charts and figures which successfully facilitate understanding of the ideas. The
author does not avoid mentioning the Open Source technology in the requirements as a
comfortable opportunity for system integration in the modern IT world. Alongside this, I found
some more general business requirements to the meta-model implementation such as
abstraction, simplicity of use, and plug-in architecture without which none of modern information
systems is able to work.

In the fourth and fifths chapters, that can be considered as the special part, the author gives the
description (specification?) of the system architecture and the XML based transaction
management script language. He provides the whole specification of the script language
supported by numerous illustrative examples.

In chapter six, the structure of API implementation of the meta-model is given that also
demonstrates good knowledge of UML; however, I could only guess that the programming

A Meta Model For Long Lived Transactions

 Page 168 of 175

language for those API was Java. If any other languages were supported, the reporter did not
mention.

In this work the author has demonstrated deep awareness at long-live transaction management
problems in the modern period and also independency in his conclusions and decisions. The
basis was presented correctly and consecutively from the point of logic. Definitely, the reporter
demonstrates modern approaches in his solutions and a fresh look at the problem.

The style the material is written is very easy to understand, I underline this particularly because
English is not my native language. Successfully combine figurativeness of treatment of the
material with laconism in some terms and definitions, the author skillfully accompanies the text
with illustrations and quotes of authoritative specialists.

As the most important point I would like to note the usage XML as the script language and the
way the author envisaged the architecture.

In general, this work inspires an interest for further scientific research.

There are a few weaknesses in the report, however:

1) The Abstract chapter is brought out of the content table and comes first.

2) The application sphere needs to be provided in chapter 1.

3) The programming language is not specified in the API requirements

Apart from these unessential drawbacks, I consider that the given dissertation is performed at
rather a high level and deserves an appropriate grade.

Chief of program developing department,

*System analyst *

*Mikhail Usatchev *

* *

* *

B.) Mark Little – Arjuna Technologies

From: "Mark Little" <mark.little@arjuna.com>
To: "Justin Spiteri" <justins@waldonet.net.mt>
Subject: Re: Justin Spiteri - Query
Date: 07 November 2005 13:41

Justin Spiteri wrote:

> Hi Mr. Little,
> I'm Justin, the student who had asked information

A Meta Model For Long Lived Transactions

 Page 169 of 175

> about WS-CAF. My thesis is under way, however i encountered some
> minor problems.
>
> 1.) There seems to be some confusion on the web regarding
> WS-ACID/LRA/BP, and TX-ACID/LRA.BP. I know theres the WS-AT/BA, and
> they're something different, but the reference i found, namely one
> draft of yours regarding WS-CAF's WS-ACID made me think twice. I
> think that they're exactly the same thing, however can you confirm
> please?. Thanks.

WS-TXM was the original name of the specification that contained
WS-ACID/LRA/BP. However, we then split them into separate
specifications, so WS-TXM no longer exists. The specifications are
WS-ACID, WS-LRA and WS-BP.

> 2.) Another small issue, would you kindly point out to me the
> latest version of theWS-CAF please?. I found the 1.0 (July 28, 2003)
> one online.

You need to look at the OASIS WS-CAF committee home page and download
the latest versions of WS-Context, WS-CF, WS-ACID, WS-LRA and WS-BP to
get a complete view of WS-CAF. There is no single download for WS-CAF
any longer.

Mark.

>
> Thanks and best regards,
>
> Justin Spiteri
> IT Year 4 Student
> University of Malta
> Europe

--
Mark Little
Chief Architect
Arjuna Technologies Ltd
www.arjuna.com

From: "Mark Little" <mark.little@arjuna.com>
To: "Justin Spiteri" <justins@waldonet.net.mt>
Subject: Re: Justin Spiteri - University of Malta
Date: 20 October 2005 12:22

Sure, that's not a problem.

Mark.

Justin Spiteri wrote:

> Hi Mark, thanks a lot for the info, you saved me hours of painstaking

A Meta Model For Long Lived Transactions

 Page 170 of 175

> work reading through every possible option available. With the time
> saved, i'm aiming at putting effort in building it as an open source
> project. Just for the records, can i please add you as reference
> source in my thesis?. Thanks again.
>
> Regards,
> Justin
>
> Mark Little wrote:
>
>> Hi Justin.
>>
>> Justin Spiteri wrote:
>>
>>> Hi Mr. Little,
>>> I'm Justin Spiteri, a final year student at the
>>> University of Malta, currently reading for an honours degree in
>>> Information Technology. I have always been interested in
>>> transaction processing and I've chosen to carry out my research
>>> based thesis on this particular subject. During my research I
>>> couldn't help but noticing your name in most of the documents which
>>> I read, ranging from WS-CAF/AT/BA and Oasis BTP specifications, to
>>> your recent JSR156 specification request.
>>>
>>> Specifications apart, my main idea is that of
>>> following JSR95's Activity service specification, and creating an
>>> extended version of JBOSS, which caters for Long Running
>>> Transactions, however, eliminating the CORBA/IIOP based part of
>>> JSR-95, and replacing it with a form of web service based
>>> structure. The application may be similar to your recent
>>> development with ARJUNA, however being not CORBA based. The main
>>> idea is to eliminate corba in favour of a more commonly used web
>>> service based protocol such as XML/SOAP.
>>
>>
>>
>> You should look at WS-CAF in this case: the basic infrastructure
>> defined by WS-Context/WS-CF is essentially what you have described.
>>
>>>
>>> I would greatly appreciate any comments tips or
>>> suggestion by an experienced person like you, which may especially
>>> help me out in choosing which standards to use for this
>>> application. I've seen various standards, and just can't make out
>>> which one fits best. My main dilemma is the choice between WS-BA,
>>> WS-CAF, or BTP. Thanks in advance for your help, I admire your
>>> works, and I wish you good luck in all your present and future
>>> projects.
>>
>>
>>
>> Don't bother with BTP: it does not fit the requirements you've
>> mentioned. WS-BA does not either, although WS-Coordination is close.
>> However, I believe that the combination of WS-Context and WS-CF (both
>> from WS-CAF), much more closely matches what you've described. So,
>> I'd recommend you take a look at them.

A Meta Model For Long Lived Transactions

 Page 171 of 175

>>
>> Mark.
>>
>>>
>>> Best Regards,
>>>
>>> Justin Spiteri
>>> BSc. IT Year 4 Student
>>> University of Malta
>>>
>>> Tel : +35699856894
>>>
>>> Address:
>>>
>>> 37, St. Augustine Str.
>>> Zejtun ZTN02
>>> Malta, Europe.
>>
>>
>>
>>
>
>

From: "Mark Little" <mark.little@arjuna.com>
To: "Justin Spiteri" <justins@waldonet.net.mt>
Subject: Re: Justin Spiteri - University of Malta
Date: 14 October 2005 11:50

Hi Justin.

Justin Spiteri wrote:

> Hi Mr. Little,
> I'm Justin Spiteri, a final year student at the
> University of Malta, currently reading for an honours degree in
> Information Technology. I have always been interested in transaction
> processing and I've chosen to carry out my research based thesis on
> this particular subject. During my research I couldn't help but
> noticing your name in most of the documents which I read, ranging from
> WS-CAF/AT/BA and Oasis BTP specifications, to your recent JSR156
> specification request.
>
> Specifications apart, my main idea is that of
> following JSR95's Activity service specification, and creating an
> extended version of JBOSS, which caters for Long Running Transactions,
> however, eliminating the CORBA/IIOP based part of JSR-95, and
> replacing it with a form of web service based structure. The
> application may be similar to your recent development with ARJUNA,
> however being not CORBA based. The main idea is to eliminate corba in
> favour of a more commonly used web service based protocol such as
> XML/SOAP.

A Meta Model For Long Lived Transactions

 Page 172 of 175

You should look at WS-CAF in this case: the basic infrastructure defined
by WS-Context/WS-CF is essentially what you have described.

>
> I would greatly appreciate any comments tips or
> suggestion by an experienced person like you, which may especially
> help me out in choosing which standards to use for this application.
> I've seen various standards, and just can't make out which one fits
> best. My main dilemma is the choice between WS-BA, WS-CAF, or BTP.
> Thanks in advance for your help, I admire your works, and I wish you
> good luck in all your present and future projects.

Don't bother with BTP: it does not fit the requirements you've
mentioned. WS-BA does not either, although WS-Coordination is close.
However, I believe that the combination of WS-Context and WS-CF (both
from WS-CAF), much more closely matches what you've described. So, I'd
recommend you take a look at them.

Mark.

>
> Best Regards,
>
> Justin Spiteri
> BSc. IT Year 4 Student
> University of Malta
>
> Tel : +35699856894
>
> Address:
>
> 37, St. Augustine Str.
> Zejtun ZTN02
> Malta, Europe.

C.) Marek Prochazka – Charles University Czech Republic

Subject: Re: Thesis on Extending EJB for Long Lived Transactions - Student from Malta
From: Marek Prochazka <marekproc@yahoo.co.uk>
Date: Fri, 10 Mar 2006 10:08:00 +0000 (GMT)
To: Justin Spiteri <justins@waldonet.net.mt>

Justin,

I've seen pages 4-6 and especially your prelimary proposal, and quicly
saw the rest of the document.

>> The question is this, i have researched and reviewed vast amounts of
>> papers, and i came to a personal conclusion that, (agreeing with your
>> ideals), transactional behaviour should not be catered for at
>> deployment

A Meta Model For Long Lived Transactions

 Page 173 of 175

>> time, but rather before implementation of actual units of work. Thus
>> i
>> had in mind to develop a new concept, that of a transactional
>> behaviour
>> descriptor script, which is written by the developer prior to actual
>> coding, and which possibly generates a raw code framework (stubs) for
>>
>> the developer to "fill in". The concept in itself is very simple,
>> and
>> it actually eliminates completely the idea of having a container
>> handling the transactions at runtime (such as JBOSS), however i still
>>
>> have some issues so as to how can the developer possibly be
>> restricted
>> from executing Units of Work, according to their dependencies defined
>> in
>> the script, however this is an implementation issue. What i would
>> really like is your opinion about the general idea. I'm the only
>> student working on this subject at the University of Malta, and i
>> feel
>> quite lost with no guidance. According to you, is the idea doable?.
>>
>> I've arrived at a quite advanced definition stage of the script and
>> the
>> parser, which will be XML based.

I understand in principle where you're heading, but I don't understand
any details. O.K., if you going to do something like ConTracts, what's
data your UOWs manipulate? Do you have any sketchy example on how it
should look like and what are the benefits? Any example of a model
based on the metamodel? The metamodel? Benefits?

One more comment: I've seen you list of references. Do you know this:
http://jotm.objectweb.org/TP_related.html
It is now little bit out-dated, but still there is a lot of useful
references...

If you explain me the idea of your work more precisely, I can try to
evaluate it. But please keep in mind that I finished working on
transactions in Summer 2003, and I suspect there has been a lot of
progress since then.

Regards,
Marek

Subject: Re: Thesis on Extending EJB for Long Lived Transactions - Student from Malta
From: Marek Prochazka <marekproc@yahoo.co.uk>
Date: Wed, 16 Nov 2005 10:11:43 +0000 (GMT)
To: Justin Spiteri <justins@waldonet.net.mt>

Hello Justin,

A Meta Model For Long Lived Transactions

 Page 174 of 175

>> I'm Justin Spiteri, a 22 year old student from Malta, Europe.
>> I'm currently in my final year for a BSc IT Degree at the
>> University of Malta, and i'm undertaking a thesis entitled
>> "Transaction Models for
>> J2EE". During my research, i came over your Phd Thesis about
>> Bourgogne Transactions, and since i'm looking for a good model
>> with which to
>> extend J2EE to support Long Lived Transactions, i found it
>> extremely
>> interesting. I am seriously considering of extending J2EE with
>> a version of the Bourgogne Transaction Model. My only fear is
>> that the concept may be too complex to implement, since i'm
>> still reading for
>> a BSc Degree, and not a Phd. Would you kindly answer any issues
>> which i may have, if i decide to undertake Bourgogne
>> implementation?. I'm more

it is certainly interesting that you want to implement Bourgogne
Transaction for J2EE. BTW, what you mean by "a version" of BT?
As for answering your questions, I'm ready and would be happy to answer
eventual questions, but I can't you promise to answer "any issues which
you may have". It very much depends 1) on how many and how difficult
questions you are going to have and also 2) on my working schedule. I'm
employed and do not longer work on transaction nor Java (I used to work
for JOTM/ObjectWeb). But as I said, in general I'm willing to answer
any meaningful queries.

Apart from wondering which "version" of BT you have in mind, I wonder
whether you know that BT were partially implemented for EJB, so that
the implementation deals with XA resources/JDBC connections. So, in
which sense your new implementation would differ, putting aside that my
implementation was incomplete and dealt only with inter-transaction
dependencies?

>> concerned about implementation complexities such as, must a
>> specific
>> Application Server such as JBoss be extended? Or would the
>> Bourgogne implementation be completely independent?.

Imagine you have a transaction manager which provides JTA. JBoss or
JONAS can for example use JOTM and use exactly the API specified in
JTA. Moreover, they provide some interface which is used by JOTM, for
example XAResource or JDBC connection.

What you want to do, I guess, is to extend JTA to support long-lived
transactions, so that your applications can use it. Let's call this API
JTA/BT.

Now, what you have to consider is
1) XAResource or JDBC connections do not support BT. They can't
delegate some resources from a transaction to another. They can't share
data differently than in the standard ACID way with isolation levels
defined. (Also standard relational databases such as Oracle or MySQL

A Meta Model For Long Lived Transactions

 Page 175 of 175

can't do it).
2) The applicaion server will not use BT, as it is designed to use only
JTA.

So, my answer is: yes, I think you'd have to modify an application
server (or database) to support some of the BT features.

Another, more philosophical issue is as follows: I'm not sure it was
actually a good idea to support so generic model for end users. Maybe
BT should be used as a metamodel and a more specific model should be
built on top of that. Just an idea.

Best regards,
Marek

