
TransIT Meta Model Script Specification

Author : Justin Spiteri (143083M) Page 1 of 19

TransIT Meta Model Script Specification

1.) Script Constructs

The following list includes a full definition of the TransIT scripting language
syntax, together with a case example for each construct. These constructs
define the TransIT workflow modeling language:

A.) Script Constructs: The Model Tag

Syntax <model>…</model>

Definition

This section introduces the basic script template upon which every
model should be built. As previously stated, a script should
contain a model XML tag, into which a name tag, a global
declaration tag, a workflow tag, and a main tag are embedded.
These tags are tackled and explained individually in the following
text.

Rules

• The script must always be embedded in a <model> tag.

• One <name> tag containing the script’s name should
always be present as a first child node to the model tag.

• One global declaration tag should always be included, and
it should always contain one <activityList> tag which has a
size XML attribute, amongst other tags of other types, if
necessary.

• One <workflow> tag should always be present in the
script, positioned after the <name> and <declaration>
tags, containing the actual script workflow.

• One <main> tag should always be present as the last child
node of the <model> tag.

TransIT Meta Model Script Specification

Author : Justin Spiteri (143083M) Page 2 of 19

• Uppercase or lowercase format may be used for tag
definitions, there is no difference in operation since the
engine will convert all the tags to lowercase during the
parsing process. However parameters, and variable
declarations are case sensitive, thus attention should be
paid when assignining them.

• Standard XML format rules apply, that is, every tag must be
opened and close, attribute values should be embedded in
double inverted commas, etc… for details about xml format
standards please refer to the following web link:

 http://www.w3schools.com/xml/

Sample
Script

<?xml version="1.0" encoding="utf-8" ?>

<model>
 <name><!-- Put Model Name Here --></name>

 <decl>
 <activityList size = "*n*">
 <!--arrayOfActivities -->
 </activityList>
 </decl>

 <workflow>
 …
 …
 <!--Actual Workflow, segments &
 imperative language constructs. -->
 …
 …
 </workflow>

 <main>
 <!--A goto statement indicating which
 segment to execute first.-->
 </main>

</model>

B.) Script Constructs: Name Tag

Syntax <name>Alpha Numeric Value</name>

Definition

TransIT Meta Model Script Specification

Author : Justin Spiteri (143083M) Page 3 of 19

The name tag simply serves as a data holder for the current name
of the Transaction Model which is being defined in the script in
question.

Rules

• A script should have one instance of the <name> tag. It
should be included as the first child node inside a <model>
tag.

• The name tag has no XML attributes, and takes an
alphanumeric inner text value, which represents the Model’s
Name.

Sample
Script

<?xml version="1.0" encoding="utf-8" ?>

<model>
 <name><!--Put Model Name Here --></name>

 …

C.) Script Constructs: Global/Local Declaration Tag

Syntax <decl>…</decl>

Definition

The <decl> tag’s main purpose is that of providing an indicator for
a global or local variable declaration present in the script.

Rules

• A script should always have one instance of the <decl> tag
included as the second child node inside a <model> tag,
right after the <name> tag. This should include an
<activityList> tag, amongst other global declarations of
type <counter>.

• Local declarations can also be present in script segments.
These are also constituted by a <decl> tag, present in a
segment tag, before the actual workflow code. A local
<decl> tag possesses no attributes, and can have one or
more children of type <counter>.

Sample
Script

<model>
 <name><!--Put Model Name Here --></name>

TransIT Meta Model Script Specification

Author : Justin Spiteri (143083M) Page 4 of 19

 <decl>
 <activityList size = "*n*">
 arrayOfActivities
 </activityList>
 …
 <!--Variables of type <counter> -->
 …
 </decl>
 …

D.) Script Constructs: ActivityList Tag

Syntax <activityList>Name of LLT</activityList>

Definition

The activityList tag has the sole purpose of defining an abstract
list of activities, which will be used in order to create the model.
The activityList tag contains an XML attribute, named “size” which
defines the size of the list. In essence the activityList has
properties of an ArrayList where each position in the list signifies
an activity.

Rules

• An <activityList> tag, should always be declared globally in
a script definition. Only one instance if this tag is allowed
per script.

• The size attribute of this tag may be alphanumeric, since
the value can either be definite, as in integer values, or
indefinite, as in *n*, where *n* refers to the size of the list.

Sample
Script

<model>
 <name><!--Put Model Name Here --></name>

 <decl>
 <activityList size = "*n*">
 arrayOfActivities
 </activityList>
 …
 <!--Variables of type <counter> -->
 …
 </decl>
 …

TransIT Meta Model Script Specification

Author : Justin Spiteri (143083M) Page 5 of 19

E.) Script Constructs: Counter Tag

Syntax
<counter value = “V”>Name of Variable</activityList>

where V is a Natural Number

Definition

The counter tag is used in the <decl> tag in order to declare a
local or global variable of type Integer. The Inner Text of this tag
is considered to represent the variable name, while the value is
stored inside a value attribute.

Rules

• While any amount of declarations is allowed, a <counter>
tag may be used only inside a <decl> tag.

• The value attribute of this tag must always be of type
natural number, since the value can only be of definite
type.

• Counter tags can be assigned a value externally by <goto>
statements. This is done if a <goto> statement has a
parameter attribute which has the same name as a local
variable in the segment it is calling. If this is the case, the
local variable, takes the parameter’s value.

Sample
Script

<?xml version="1.0" encoding="utf-8" ?>

<model>
 <name>Put Model Name Here</name>

 <decl>
 <activityList size = "*n*">
 arrayOfActivities
 </activityList>

 <counter value = "0">globalk</counter>
 </decl>

 <workflow>
 <segment id = “A Segment”>
 <decl>
 <counter value = "0">k</counter>
 </decl>
 …

TransIT Meta Model Script Specification

Author : Justin Spiteri (143083M) Page 6 of 19

F.) Script Constructs: WorkFlow Tag

Syntax <workflow>…</workflow>

Definition

The scope of the workflow tag is that of containing the actual
workflow definition of the model, described using classic
imperative language constructs.

Rules

• Every script should contain one workflow tag, placed after
the global declarations. Workflow tags do not possess XML
attributes.

• The workflow tag must contain one or more child notes of
type <segment>.

Sample
Script

 <workflow>
 <segment id = “A Segment”>
 <decl>
 <counter value = "0">k</counter>
 </decl>
 …

G.) Script Constructs: Segment Tag

Syntax
<segment id = “X”>…</segment>

Where id is Alphanumeric

Definition

The segment tag is responsible for containing the core part of the
Transit Script, where the actual workflow resides. The segment
tag has an XML attribute named “id” whose value represents the
name of the segment. This name is used by <goto> statements
in order to call the segment.

Rules

• Segment tags should always be contained in a workflow
tag. Multiple segment tags are allowed, however each one
must have a unique value in the “id” attribute.

• Parameters may be passed to segments from <goto>

TransIT Meta Model Script Specification

Author : Justin Spiteri (143083M) Page 7 of 19

statements. This is done be declaring a local variable inside
the segment tag, which has the same name as a parameter
which is being passed. The TManager engine will then
automatically cater for value mapping. Please note that
recursion is not permitted in the Transit Script.

• The child structure of a segment should include, primarily
any variable declarations, and then a <begin> tag.

Sample
Script

 <workflow>
 <segment id = “A Segment”>
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 …
 </segment>

H.) Script Constructs: Begin Tag

Syntax <begin>…</begin>

Definition

The begin tag is the first tag which servers as an indicator point
for the parser that the actual workflow definition has begun. From
this point onwards, the script takes a more “Procedural 3rd
Generation Language” look.

Rules

• There are no strict rules for the content of the begin tag, as
long as it contains one of the following tags: <fordo>,
<ifthen>, <elseif>, <execute>, <goto>, or <cmd>.

• A begin tag should always be used inside a <segment>
tag, and should follow and <decl> tags which define local
variables. Only one begin tag is allowed per segment.

Sample
Script

 <workflow>
 <segment id = “A Segment”>
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 …
 …

TransIT Meta Model Script Specification

Author : Justin Spiteri (143083M) Page 8 of 19

 </begin>
 </segment>

I.) Script Constructs: For Do Tag

Syntax

<fordo begin = “A” end = “B” counter = “C” step = “D”>…</fordo>

Where: A,B and C are *n* based expressions
Where D is either ++ or --

Definition

The <fordo> tag is similar to the for loop in the C# and Java
languages. It contains four attributes in all; the “begin” and “end”
attributes indicating the starting and ending value through which
to loop, the “counter” indicating the variable used to keep the
current value, and the “step” attribute indicating whether the loop
is ascending or descending step values.

Rules

• The fordo must always be contained inside a begin
statement.

• Nesting is allowed, thus a <fordo> can contain another
<fordo>

• The begin and end attributes may contain variable names
which have been locally or globally declared instead of
literal values. These are then converted into a natural
number the parent segment is called through a <goto>
statement, which passes variable values.

• The counter attribute’s value must be alphanumeric, and
must match the name of a locally or globally declared
variable. This variable will hold the value of the current
loop count.

• The step attribute must always contain either ++ for step
up, or – for step down loops.

• A for do statement can contain the same tags as a <begin>
statement.

Sample
Script

<workflow>
 <segment id = "Start">

TransIT Meta Model Script Specification

Author : Justin Spiteri (143083M) Page 9 of 19

 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 <fordo begin = "paramone"
 end = "paramtwo"
 counter = "k"
 step = "++">
 …
 …
 </fordo>
 …

J.) Script Constructs: If Then and Else If Tags

Syntax

<ifthen type = “normal” index = “A” result = “B” >…</ifthen>

Where: A is an *n* based expression
Where B is “completed/committed/rolledback/compensated”

OR

<ifthen type = "expression" expression1 = "A" operator = "B" expression2
= "C">

Where A and C are *n* based expressions including + or –

Where B is one of the operators (<, >, <=, >=, ==)

Definition

The <ifthen> tag is also similar to the if then else loop in the C#
and Java languages. However the use of if then statements in the
transit model is restricted to two types; those which check the
outcome of the execution of an activity, and those which evaluate
expressions, as seen in the syntax formats above. The “type”
attribute present in the tag has two values, “normal”, which
indicates that the statement is an expression outcome evaluator,
or “expression” which indicates that the statement is an
expression evaluator.

In the “normal” statement, the “index attribute indicates the
position of the Activity in the “activityList”, which is under
question, while the result indicates the expected outcome.

In the “expression” statement, the attributes “expression1” and
“expression2” may contain alphanumeric expressions with
operators + or -, while the operator attribute may contain a
selection of Boolean operators.

TransIT Meta Model Script Specification

Author : Justin Spiteri (143083M) Page 10 of 19

Rules

• The <ifthen> must always be contained inside a begin
statement.

• Nesting is allowed, thus an <ifthen> can contain another
<ifthen>

• The <ifthen> tag can contain any structure which the
<begin> tag or the <fordo> tags contain. (<fordo>,
<ifthen>, <elseif>, <cmd>, etc…)

• The index attribute in the normal <ifthen>, and the
expression attributes in the expression valuator <ifthen>
may contain *n* based expressions, or natural numbers.

• When an <ifthen> tag closes, it may be immediately
followed by an <elseif> tag, which possesses the same
attribute properties of the <ifthen> tag, or an <else> tag
with no statements, which simply executes the child notes
inside if if the <ifthen> or <elseif> statements preceding it
fail.

Sample
Script

<workflow>
 <segment id = "Start">
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 <ifthen index = "k"
 result = "rolledback"
 type ="normal">
 …
 …
 </ifthen>
 <elseif type = “expression”
 expression1 = “k”
 operator = “<”
 expression2 = “*n*>
 …
 …
 </elseif>
 <else>
 …
 …
 </else>
 …
 </begin>
 …

TransIT Meta Model Script Specification

Author : Justin Spiteri (143083M) Page 11 of 19

K.) Script Constructs: Execute Tag

Syntax

<execute position = “A” type = “B”>LLT Name</execute>

Where A is an *n* based expression
Where B is “complete/commit/rollback/compensate”

Definition

This construct is the most important construct in the script, since
it maps an activity from the LLT provided by the developer, and
executes it according to the parameters defined in this statement.
The execute statement has two attributes, the position, which
indicates the actual position of the activity to process in the
activityList, and the type, which defines till what level should the
execution proceed.

Rules

• Execute statements can only be used inside a begin tag,
inside a segment.

• An Activity may be executed several times, progressively,
starting from type complete, and moving on to type
commit, to type compensate. The same state cannot be
executed twice, as this would cause not make sense in a
transactional context. The previously explained rules apply,
where if an activity commits, it cannot be rolled back, but
has to be compensated.

• The position of the activity to execute may be expressed
either by a natural number, or by an *n* based expression.

• An execute statement does not contain child notes, but its
inner Text represents the name of the activityList from
which Activities are being processed.

Sample
Script

 <begin>
 <execute position = "k" type = "commit">
 arrayOfActivities
 </execute>
 …
 …

TransIT Meta Model Script Specification

Author : Justin Spiteri (143083M) Page 12 of 19

L.) Script Constructs: Goto Tag

Syntax

<goto paramone = "A" paramtwo = "B">Segment Name</goto>

Where A and B are *n* type expressions

Definition

The <goto> statement has the main task of issuing calls to
segments, either from the main program, or from within a
segment itself. Unlike the classic “goto” statement in assembly
language, this goto does not promote spaghetti code, since it can
only issue segment calls, similar to a method call in C# or Java.
The <goto> statement can have an indefinite number of
elements, which act as parameters in order to pass values to
global or local variables. The engine matches the name of the
attribute (for example: paramone), to a the name of a variable
inside a segment, or a global variable, and propagates the
parameter value to it. Thus parmeters may be passed between
segments through the <goto> statement.

Rules

• The <goto> statement can only be used inside a <begin>
tag, where multiple instances are allowed, or inside the
<main> tag, where only one instance is allowed.

• The parameter names should match already existent
variables which have been globally or locally declared.

• The inner text of the command should match a segment
which is listed inside a <workflow> tag inside the same
script file.

Sample
Script

…
…
<ifthen index = "k" result = "rolledback" type ="normal">
 <goto paramone = "k-1" paramtwo = "0">CompensateAll</goto>
 <cmd>exitscript</cmd>
</ifthen>
…
…

TransIT Meta Model Script Specification

Author : Justin Spiteri (143083M) Page 13 of 19

M.) Script Constructs: CMD Tag

Syntax <cmd>exitscript</cmd>

Definition

This is a simple command which is part of the workflow, and at
present contains only one command, which is the “exitscript”
command. As soon as this tag is found, its inner text is analysed,
and the corresponding command is executed. Plans to extend this
tag are classified as future work.

Rules

• <cmd> statements can only be used inside a begin tag,
inside a segment.

• Since at present, <cmd> has only the “exitscript”
command, it can be stated that <cmd> is solely used to
exit the script in case a transaction fails, however this may
be extended in future versions.

Sample
Script

…
…
<ifthen index = "k" result = "rolledback" type ="normal">
 <goto paramone = "k-1" paramtwo = "0">CompensateAll</goto>
 <cmd>exitscript</cmd>
</ifthen>
…
…

N.) Script Constructs: Main Tag

Syntax <main>…</main>

Definition

The main tag has the simple scope of containing one <goto>
statement, which indicates the first segment which must be called
upon initial execution.

Rules

• The <main> can only be used once in a script, and it
should be placed as the final child of the model tag, after
the <workflow> tag.

• The <main> tag is only allowed to have one child of type
<goto> which indicates the starting segment, and passes

TransIT Meta Model Script Specification

Author : Justin Spiteri (143083M) Page 14 of 19

initialization parameters.

Sample
Script

 <main>
 <goto paramone = "0" paramtwo = "*n*">Start</goto>
 </main>

2.) Examples

Provided in this section are three transaction models which have been defined
using the TransIT Meta Model Script’s constructs. These include the Nested
Transaction Model, a custom SAGA based model which dynamically implements a
try…catch statement, and the Long Lived Transactions Model, originally
conceptualized by Ixaris (Malta) Ltd.

A.) The Nested Model

<?xml version="1.0" encoding="utf-8" ?>

<model>
 <name>Nested Model</name>

 <decl>
 <activityList size = "*n*">
 arrayOfActivities
 </activityList>
 </decl>

 <workflow>
 <segment id = "Start">
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 <fordo begin = "paramone"

end = "paramtwo"
counter = "k"
step = "++">

<execute position = "k" type = "complete">

 arrayOfActivities
 </execute>

 <ifthen index = "k" result = "rolledback" type ="normal">
 <goto paramone = "k-1"

paramtwo = "0">

RollbackAll
</goto>

TransIT Meta Model Script Specification

Author : Justin Spiteri (143083M) Page 15 of 19

 <cmd>exitscript</cmd>
 </ifthen>
 </fordo>
 <ifthen type = "expression"

expression1 = "k"
operator = "=="
expression2 = "paramtwo">

 <goto paramone = "paramone"

paramtwo = "paramtwo">

CommitAll
</goto>

 </ifthen>
 </begin>
 </segment>

 <segment id = "RollbackAll">
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 <fordo begin = "paramone"

end = "paramtwo"
counter = "k"
step = "--">

<execute position = "k" type = "rollback">

 arrayOfActivities
 </execute>
 </fordo>
 </begin>
 </segment>

 <segment id = "CommitAll">
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 <fordo begin = "paramone"

end = "paramtwo"
counter = "k"
step = "++">
<execute position = "k" type = "commit">

 arrayOfActivities
 </execute>
 </fordo>
 </begin>
 </segment>
 </workflow>
 <main>
 <goto paramone = "0" paramtwo = "*n*">Start</goto>
 </main>
</model>

TransIT Meta Model Script Specification

Author : Justin Spiteri (143083M) Page 16 of 19

B.) The JSR 95 Model (Ixaris Implementation)

<?xml version="1.0" encoding="utf-8" ?>

<model>
 <name>LLT Model</name>

 <decl>
 <activityList size = "*n*">
 arrayOfActivities
 </activityList>
 </decl>

 <workflow>
 <segment id = "Start">
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 <fordo begin = "paramone"

end = "paramtwo"
counter = "k"
step = "++">

<execute position = "k" type = "commit">
 arrayOfActivities
 </execute>

 <ifthen index = "k" result = "rolledback" type ="normal">
 <goto paramone = "k-1" paramtwo = "0">

CompensateAll
</goto>

 <cmd>exitscript</cmd>
 </ifthen>
 </fordo>
 </begin>
 </segment>

 <segment id = "CompensateAll">
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 <fordo begin = "paramone"

end = "paramtwo"
counter = "k"
step = "--">

 <execute position = "k" type = "compensate">
 arrayOfActivities
 </execute>
 </fordo>
 </begin>

TransIT Meta Model Script Specification

Author : Justin Spiteri (143083M) Page 17 of 19

 </segment>
 </workflow>

 <main>
 <goto paramone = "0" paramtwo = "*n*">Start</goto>
 </main>
</model>

C.) The Custom SAGA based Model

<?xml version="1.0" encoding="utf-8" ?>

<model>
 <name>TryCatch Saga</name>

 <decl>
 <activityList size = "*n*">
 arrayOfActivities
 </activityList>
 </decl>

 <workflow>
 <segment id = "Try">
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 <fordo begin = "*n*-*n*"

end = "*n*-(*n*-1)"
counter = "k"
step = "++">

 <execute position = "k" type = "complete">
 arrayOfActivities
 </execute>

 <ifthen index = "k" result = "rolledback" type ="normal">
 <goto param1 = "k-1" param2 = "*n*-*n*">

Catch
</goto>

 <cmd>exitscript</cmd>
 </ifthen>
 </fordo>
 <ifthen type = "expression"

expression1 = "k"
operator = "=="
expression2 = "*n*-(*n*-1)">

TransIT Meta Model Script Specification

Author : Justin Spiteri (143083M) Page 18 of 19

 <fordo begin = "*n*-*n*"
end = "*n*"
counter = "k"
step = "++">

 <execute position = "k" type = "commit">
 arrayOfActivities
 </execute>
 <ifthen index = "k"

result = "rolledback"
type ="normal">

 <goto param1 = "k-1"

param2 = "*n*-*n*">

Finally
</goto>

 <cmd>exitscript</cmd>
 </ifthen>
 </fordo>
 </ifthen>
 </begin>
 </segment>

 <segment id = "Catch">
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 <fordo begin = "param1"

end = "param2"
counter = "k"
step = "--">

 <execute position = "k" type = "rollback">
 arrayOfActivities
 </execute>
 </fordo>
 </begin>
 </segment>

 <segment id = "Finally">
 <decl>
 <counter value = "0">k</counter>
 </decl>
 <begin>
 <fordo begin = "param1"

end = "param2"
counter = "k"
step = "--">

 <execute position = "k" type = "compensate">
 arrayOfActivities

TransIT Meta Model Script Specification

Author : Justin Spiteri (143083M) Page 19 of 19

 </execute>
 </fordo>
 </begin>
 </segment>
 </workflow>

 <main>
 <goto>Try</goto>
 </main>
</model>

The script syntax is so simple that it can be considered as self explanatory.
Virtually any form of transaction model can be modeled using this Meta Model,
thus making it an ideal candidate for becoming a possible standard.

