
A Meta Model for Multiple Transaction Models

Author: Justin Spiteri Supervisor: Patrick Abela

Project Background

It has been widely recognized that traditional transaction models with ACID
(Atomicity, Consistency, Isolation, and Durability) properties are generally not
applicable to transactions which have a compound nature. This has led
researchers both in industry and academy to create of a series of specialized
models which cater for this type of transactions, each oriented towards a
particular range of applications, according to the needs of the particular
developer.

The main problem with these models is that unlike traditional transaction
models, where one model suited a very wide range of applications, these
models fit only a narrow band of applications to the extent that in some cases,
a completely customized model must be developed for an application. This is
due to the fact that while ACID based models are based on a fixed workflow
consisting of two parties, these models must cater for multiple parties,
possibly resulting in a different workflow for each application, thus requiring a
redesign of the model every time.

At present, to redesign a model, a developer must have a solid knowledge in
the field of transaction management, and apprehending all the concepts
needed is a time consuming task. While standardization efforts have been
made with workflow modeling languages such as BPEL, these still require the
developer to learn the transaction oriented language syntax in order to be
able to create adequate transaction models.

Project Objectives

The main objective of this project is the introduction of a series of novel
concepts resulting from an extensive research which standardize the process
of transaction model definition, through the design and development of a
specialized Meta Model, the Transit Meta Model.

The Transit Meta Model is an XML based scripting language which allows the
definition of any workflow based transaction models using classic imperative
language blocks such as “if then” and “for do” statements. Being compliant to
W3C XML specifications, and having well known language constructs, the
language succeeds in simplifying the transaction model description process,
by virtually abstracting the developer from complex transactional details such
as transaction inter dependencies. The only knowledge needed by a
developer to use the Transit Model Solution is basic OOP programming
language knowledge, knowledge of XML syntax, and basic experience in the
creation of abstract workflows.

The applicability of the Transit Model is proved by introducing the Transit
Model Solution, an open source compound transaction management system
based on the Transit Model. Secondary objectives of this project include the
experimentation with advanced transaction handling features, such as the
introduction of long running transaction suspension and resumption
mechanisms into the transaction management engine, together with the
introduction of novel architectural concepts, such as the separation of
transaction management system design from model definitions, thus creating
a “pluggable architecture” where a management system can switch
transaction models. This makes the system suitable to a wider range of
applications.

Project Methodology

While this project is heavily research oriented, the formal methodology used in
the development of the Transit Meta Model and Solution has been based on a
hybrid of spiral and evolutionary prototyping. The general architecture of the
solution is displayed below:

The transit model solution has been designed in the form of an API, in order
to be easily integratable into top level solutions. In the example above, a
Transit Enabled Travel Agent System’s architecture can be observed. The
transaction model used by the Travel Agent’s System is defined in the Transit
Script File, while the Transit Model API provides necessary facilities for the
creation of a long running transaction, which is then executed according to the
model currently “plugged” into the Transaction Manager.

Results and Achievements

Various examples and practical scenarios have been tested using the Transit
API, and models defined using the Transit Meta Model, including Travel agent
and real live Electronic Account Top up scenarios. It can be concluded that
the issues identified in the research phase of this project have all been
addressed and resolved in one way or another, thus making the project a
successful one.

